

1. 1. MySQL Architecture

a. MySQL’s Logical Architecture

i. Connection Management and Security

ii. Optimization and Execution

b. Concurrency Control

i. Read/Write Locks

ii. Lock Granularity

c. Transactions

i. Isolation Levels

ii. Deadlocks

iii. Transaction Logging

iv. Transactions in MySQL

d. Multiversion Concurrency Control

e. Replication

f. MySQL’s Storage Engines

i. The InnoDB Engine

ii. JSON document support

iii. Other Built-in MySQL Engines

iv. Summary

2. 2. Scaling MySQL

a. What Is Scaling?

b. Read Versus Write Bound Loads

c. Scaling Reads with Read Pools

i. Managing Configuration for Read Pools

ii. Health Checks for Read Pools

iii. Choosing a Load Balancing Algorithm

d. Queuing

e. Sharding

i. Choosing a Partitioning Scheme

ii. Multiple Partitioning Keys

iii. Querying Across Shards

iv. Vitess

v. ProxySQL

f. Summary

High Performance MySQL

FOURTH EDITION

Optimization, Backups, and Replication

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Silvia Botros and Jeremy Tinley

High Performance MySQL
by Silvia Botros and Jeremy Tinley

Copyright © 2022 Silvia Botros and Jeremy Tinley. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com .

Editors: Virginia Wilson and Andy Kwan

Production Editor: Deborah Baker

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

http://oreilly.com/

January 2022: Fourth Edition

Revision History for the Early
Release

2020-01-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492080510 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
High Performance MySQL , the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com/catalog/errata.csp?isbn=9781492080510

978-1-492-08051-0

[LSI]

Chapter 1. MySQL Architecture

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s raw
and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be Chapter 1 of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at vwilson@oreilly.com.

MySQL’s architectural characteristics make it useful for a wide range
of purposes. Although it is not perfect, it is flexible enough to work
well in both small and large environments. These range from a
personal website up to large scale enterprise applications. To get the
most from MySQL, you need to understand its design so that you can
work with it, not against it.

This chapter provides a high-level overview of the MySQL server
architecture, the major differences between the storage engines, and
why those differences are important. We’ve tried to explain MySQL
by simplifying the details and showing examples. This discussion
will be useful for those new to database servers as well as readers
who are experts with other database servers.

MySQL’s Logical Architecture

A good mental picture of how MySQL’s components work together
will help you understand the server. Figure 1-1 shows a logical view
of MySQL’s architecture.

The topmost layer contains the services that aren’t unique to MySQL.
They’re services most network-based client/server tools or servers
need: connection handling, authentication, security, and so forth.

Figure 1-1. A logical view of the MySQL server architecture

The second layer is where things get interesting. Much of MySQL’s
brains are here, including the code for query parsing, analysis,

optimization, caching, and all the built-in functions (e.g., dates, times,
math, and encryption). Any functionality provided across storage
engines lives at this level: stored procedures, triggers, and views, for
example.

The third layer contains the storage engines. They are responsible for
storing and retrieving all data stored “in” MySQL. Like the various
file systems available for GNU/Linux, each storage engine has its
own benefits and drawbacks. The server communicates with them
through the storage engine API . This interface hides differences
between storage engines and makes them largely transparent at the
query layer. The API contains a couple of dozen low-level functions
that perform operations such as “begin a transaction” or “fetch the
row that has this primary key.” The storage engines don’t parse SQL
or communicate with each other; they simply respond to requests
from the server.

 1

Connection Management and Security

By default, each client connection gets its own thread within the
server process. The connection’s queries execute within that single
thread, which in turn resides on one core or CPU. The server caches
threads, so they don’t need to be created and destroyed for each new
connection.

When clients (applications) connect to the MySQL server, the server
needs to authenticate them. Authentication is based on username,
originating host, and password. X.509 certificates can also be used
across a TLS (Transport Layer Security) connection. Once a client
has connected, the server verifies whether the client has privileges for
each query it issues (e.g., whether the client is allowed to issue a
SELECT statement that accesses the Country table in the world
database).

 2

Optimization and Execution

MySQL parses queries to create an internal structure (the parse tree),
and then applies a variety of optimizations. These can include
rewriting the query, determining the order in which it will read tables,
choosing which indexes to use, and so on. You can pass hints to the
optimizer through special keywords in the query, affecting its
decision-making process. You can also ask the server to explain
various aspects of optimization. This lets you know what decisions
the server is making and gives you a reference point for reworking
queries, schemas, and settings to make everything run as efficiently
as possible.

The optimizer does not really care what storage engine a particular
table uses, but the storage engine does affect how the server
optimizes the query. The optimizer asks the storage engine about
some of its capabilities and the cost of certain operations, and for
statistics on the table data. For instance, some storage engines support
index types that can be helpful to certain queries. You can read more
about indexing and schema optimization in Chapter 8.

In older versions, MySQL made use of an internal query cache to see
if it can serve the results from there. However, as concurrency
increased, the query cache became a notorious bottleneck. As of
MySQL 5.7.20 the query cache was officially deprecated as a
MySQL feature and in the 8.0 release, the query cache is fully
removed. Even though the query cache is no longer a core part of the
MySQL server, caching frequently served result sets is a good

practice. In Chapter 5 we will go over ways you can implement such
a cache using different technologies.

Concurrency Control

Anytime more than one query needs to change data at the same time,
the problem of concurrency control arises. For our purposes in this
chapter, MySQL has to do this at two levels: the server level and the
storage engine level. Concurrency control is a big topic to which a
large body of theoretical literature is devoted, so we will just give you
a simplified overview of how MySQL deals with concurrent readers
and writers, so you have the context you need for the rest of this
chapter.

To illustrate how MySQL handles concurrent work on the same set of
data, we will use a traditional spreadsheet file as an example. A
spreadsheet consists of rows and columns, much like a database table.
Assume the file is on your laptop and only you have access to it.
There are no potential conflicts, only you can make changes to the
file. Now, imagine you need to collaborate with a coworker on that
spreadsheet. It is now on a shared server that both of you have access
to. What happens when both of you need to make changes to this file
at the same time? What if we have an entire team of people actively
trying to edit, add and remove cells from this spreadsheet? We can
say that they should take turns making changes but that is not
efficient. We need an approach for allowing concurrent access to a
high volume spreadsheet.

Read/Write Locks

Reading from the spreadsheet isn’t as troublesome. There’s nothing
wrong with multiple clients reading the same file simultaneously;
because they aren’t making changes, nothing is likely to go wrong.
What happens if someone tries to delete cell number A25 while
others are reading the spreadsheet? It depends, but a reader could
come away with a corrupted or inconsistent view of the data. So, to
be safe, even reading from a spreadsheet requires special care.

If you think of the spreadsheet as a database table, it’s easy to see that
the problem is the same in this context. In many ways, a spreadsheet
is really just a simple database table. Modifying rows in a database
table is very similar to removing or changing the content of cells in a
spreadsheet file.

The solution to this classic problem of concurrency control is rather
simple. Systems that deal with concurrent read/write access typically
implement a locking system that consists of two lock types. These
locks are usually known as shared locks and exclusive locks , or read
locks and write locks .

Without worrying about the actual locking mechanism, we can
describe the concept as follows. Read locks on a resource are shared,
or mutually non-blocking: many clients can read from a resource at
the same time and not interfere with each other. Write locks, on the
other hand, are exclusive—i.e., they block both read locks and other
write locks—because the only safe policy is to have a single client

writing to the resource at a given time and to prevent all reads when a
client is writing.

In the database world, locking happens all the time: MySQL has to
prevent one client from reading a piece of data while another is
changing it. It performs this lock management internally in a way that
is transparent much of the time.

Lock Granularity

One way to improve the concurrency of a shared resource is to be
more selective about what you lock. Rather than locking the entire
resource, lock only the part that contains the data you need to change.
Better yet, lock only the exact piece of data you plan to change.
Minimizing the amount of data that you lock at any one time lets
changes to a given resource occur simultaneously, as long as they
don’t conflict with each other.

Unfortunately, locks are not free - they consume resources. Every
lock operation—getting a lock, checking to see whether a lock is free,
releasing a lock, and so on—has overhead. If the system spends too
much time managing locks instead of storing and retrieving data,
performance can suffer.

A locking strategy is a compromise between lock overhead and data
safety, and that compromise affects performance. Most commercial
database servers don’t give you much choice: you get what is known
as row-level locking in your tables, with a variety of often complex
ways to give good performance with many locks.

MySQL, on the other hand, does offer choices. Its storage engines
can implement their own locking policies and lock granularities.
Lock management is a very important decision in storage engine
design; fixing the granularity at a certain level can improve
performance for certain uses, yet make that engine less suited for
other purposes. Because MySQL offers multiple storage engines, it

doesn’t require a single general-purpose solution. Let’s have a look at
the two most important lock strategies.

TABLE LOCKS

The most basic locking strategy available in MySQL, and the one
with the lowest overhead, is table locks . A table lock is analogous to
the spreadsheet locks described earlier: it locks the entire table. When
a client wishes to write to a table (insert, delete, update, etc.), it
acquires a write lock. This keeps all other read and write operations at
bay. When nobody is writing, readers can obtain read locks, which
don’t conflict with other read locks.

Table locks have variations for improved performance in specific
situations. For example, READ LOCAL table locks allow some types
of concurrent write operations. Write locks also have a higher priority
than read locks, so a request for a write lock will advance to the front
of the lock queue even if readers are already in the queue (write locks
can advance past read locks in the queue, but read locks cannot
advance past write locks).

Although storage engines can manage their own locks, MySQL itself
also uses a variety of locks that are effectively table-level for various
purposes. For instance, the server uses a table-level lock for
statements such as ALTER TABLE, regardless of the storage engine.

ROW LOCKS

The locking style that offers the greatest concurrency (and carries the
greatest overhead) is the use of row locks . Going back to the

3

spreadsheet analogy, row locks would be the same as locking just the
row in the spreadsheet. This strategy allows multiple people to edit
different rows concurrently without blocking each other. This enables
the server to take more concurrent writes, but the cost is more
overhead in having to keep track of who has each row lock, how long
they have been open, what kind of row lock it is and cleaning up
locks when they are no longer needed.

Row locks are implemented in the storage engine, not the server. The
server is mostly unaware of locks implemented in the storage
engines, and as you’ll see later in this chapter and throughout the
book, the storage engines all implement locking in their own ways.

 4

Transactions

You can’t examine the more advanced features of a database system
for very long before transactions enter the mix. A transaction is a
group of SQL queries that are treated atomically , as a single unit of
work. If the database engine can apply the entire group of queries to a
database, it does so, but if any of them can’t be done because of a
crash or other reason, none of them is applied. It’s all or nothing.

Little of this section is specific to MySQL. If you’re already familiar
with ACID transactions, feel free to skip ahead to “Transactions in
MySQL”.

A banking application is the classic example of why transactions are
necessary. Imagine a bank’s database with two tables: checking and
savings. To move $200 from Jane’s checking account to her savings
account, you need to perform at least three steps:

1. Make sure her checking account balance is greater than $200.

2. Subtract $200 from her checking account balance.

3. Add $200 to her savings account balance.

The entire operation should be wrapped in a transaction so that if any
one of the steps fails, any completed steps can be rolled back.

You start a transaction with the START TRANSACTION statement
and then either make its changes permanent with COMMIT or

discard the changes with ROLLBACK. So, the SQL for our sample
transaction might look like this:

1 START TRANSACTION;

2 SELECT balance FROM checking WHERE customer_id =

10233276;

3 UPDATE checking SET balance = balance - 200.00 WHERE

customer_id = 10233276;

4 UPDATE savings SET balance = balance + 200.00 WHERE

customer_id = 10233276;

5 COMMIT;

But transactions alone aren’t the whole story. What happens if the
database server crashes while performing line 4? Who knows? The
customer probably just lost $200. And what if another process comes
along between lines 3 and 4 and removes the entire checking account
balance? The bank has given the customer a $200 credit without even
knowing it.

Transactions aren’t enough unless the system passes the ACID test .
ACID stands for Atomicity, Consistency, Isolation, and Durability.
These are tightly related criteria that a well-behaved transaction
processing system must meet:

Atomicity

A transaction must function as a single indivisible unit of

work so that the entire transaction is either applied or

rolled back. When transactions are atomic, there is no

such thing as a partially completed transaction: it’s all or

nothing.

Consistency

The database should always move from one consistent

state to the next. In our example, consistency ensures that

a crash between lines 3 and 4 doesn’t result in $200

disappearing from the checking account. Because the

transaction is never committed, none of the transaction’s

changes are ever reflected in the database.

Isolation

The results of a transaction are usually invisible to other

transactions until the transaction is complete. This

ensures that if a bank account summary runs after line 3

but before line 4 in our example, it will still see the $200

in the checking account. When we discuss isolation

levels, you’ll understand why we said usually invisible.

Durability

Once committed, a transaction’s changes are permanent.

This means the changes must be recorded such that data

won’t be lost in a system crash. Durability is a slightly

fuzzy concept, however, because there are actually many

levels. Some durability strategies provide a stronger

safety guarantee than others, and nothing is ever 100%

durable (if the database itself were truly durable, then

how could backups increase durability?). We discuss

what durability really means in MySQL in Chapter 6.

ACID transactions and the guarantees provided through them in the
InnoDB engine specifically are one of the strongest and most mature
features in MySQL. While they come with certain throughput trade
offs, when applied appropriately, they can save you from
implementing a lot of complex logic in the application layer.

Isolation Levels

Isolation is more complex than it looks. The ANSI SQL standard
defines four isolation levels. If you are new to the world of databases,
we highly recommend you get familiar with the general standard of
ANSI SQL before coming back to reading about the specific
MySQL implementation. The goal of this standard is to define the
rules for which changes are and aren’t visible inside and outside a
transaction. Lower isolation levels typically allow higher concurrency
and have lower overhead.

NOTE
Each storage engine implements isolation levels slightly differently, and they
don’t necessarily match what you might expect if you’re used to another
database product (thus, we won’t go into exhaustive detail in this section). You
should read the manuals for whichever storage engines you decide to use.

Let’s take a quick look at the four isolation levels:

READ UNCOMMITTED

In the READ UNCOMMITTED isolation level,

transactions can view the results of uncommitted

transactions. At this level, many problems can occur

unless you really, really know what you are doing and

have a good reason for doing it. This level is rarely used

in practice, because its performance isn’t much better

 5

than the other levels, which have many advantages.

Reading uncommitted data is also known as a dirty read .

READ COMMITTED

The default isolation level for most database systems (but

not MySQL!) is READ COMMITTED. It satisfies the

simple definition of isolation used earlier: a transaction

will see only those changes made by transactions that

were already committed when it began, and its changes

won’t be visible to others until it has committed. This

level still allows what’s known as a non-repeatable read .

This means you can run the same statement twice and see

different data.

REPEATABLE READ

REPEATABLE READ solves the problems that READ

UNCOMMITTED allows. It guarantees that any rows a

transaction reads will “look the same” in subsequent

reads within the same transaction, but in theory it still

allows another tricky problem: phantom reads . Simply

put, a phantom read can happen when you select some

range of rows, another transaction inserts a new row into

the range, and then you select the same range again; you

will then see the new “phantom” row. InnoDB and

XtraDB solve the phantom read problem with

multiversion concurrency control, which we explain later

in this chapter. REPEATABLE READ is MySQL’s

default transaction isolation level.

SERIALIZABLE

The highest level of isolation, SERIALIZABLE, solves

the phantom read problem by forcing transactions to be

ordered so that they can’t possibly conflict. In a nutshell,

SERIALIZABLE places a lock on every row it reads. At

this level, a lot of timeouts and lock contention can occur.

We’ve rarely seen people use this isolation level, but your

application’s needs might force you to accept the

decreased concurrency in favor of the data stability that

results.

Table 1-1 summarizes the various isolation levels and the drawbacks
associated with each one.

T
a
b
l
e
1
-
1
.

A
N
S
I
S
Q
L

i
s
o
l
a
t
i
o
n
l
e
v
e
l
s

Isolation level Dirty reads
possible

Non-repeatable
reads possible

Phantom reads
possible

Locking
reads

READ
UNCOMMITTE
D

Yes Yes Yes No

READ
COMMITTED

No Yes Yes No

REPEATABLE
READ

No No Yes No

SERIALIZABLE No No No Yes

Deadlocks

A deadlock is when two or more transactions are mutually holding
and requesting locks on the same resources, creating a cycle of
dependencies. Deadlocks occur when transactions try to lock
resources in a different order. They can happen whenever multiple
transactions lock the same resources. For example, consider these two
transactions running against the StockPrice table:

Example 1-1. First Transaction

 START TRANSACTION;

 UPDATE StockPrice SET close = 45.50 WHERE

stock_id = 4 and date = '2020-05-01';

 UPDATE StockPrice SET close = 19.80 WHERE

stock_id = 3 and date = '2020-05-02';

 COMMIT;

Example 1-2. Second Transaction

 START TRANSACTION;

 UPDATE StockPrice SET high = 20.12 WHERE

stock_id = 3 and date = '2020-05-02';

 UPDATE StockPrice SET high = 47.20 WHERE

stock_id = 4 and date = '2020-05-01';

 COMMIT;

Each transaction will execute its first query and update a row of data,
locking it in the process. Each transaction will then attempt to update
its second row, only to find that it is already locked. The two
transactions will wait forever for each other to complete, unless
something intervenes to break the deadlock.

To combat this problem, database systems implement various forms
of deadlock detection and timeouts. The more sophisticated systems,
such as the InnoDB storage engine, will notice circular dependencies
and return an error instantly. This can be a good thing—otherwise,
deadlocks would manifest themselves as very slow queries. Others
will give up after the query exceeds a lock wait timeout, which is not
always good. The way InnoDB currently handles deadlocks is to roll
back the transaction that has the fewest exclusive row locks (an
approximate metric for which will be the easiest to roll back).

Lock behavior and order are storage engine–specific, so some storage
engines might deadlock on a certain sequence of statements even
though others won’t. Deadlocks have a dual nature: some are
unavoidable because of true data conflicts, and some are caused by
how a storage engine works.

Once they occur, deadlocks cannot be broken without rolling back
one of the transactions, either partially or wholly. They are a fact of
life in transactional systems, and your applications should be
designed to handle them. Many applications can simply retry their
transactions from the beginning.

Transaction Logging

Transaction logging helps make transactions more efficient. Instead
of updating the tables on disk each time a change occurs, the storage
engine can change its in-memory copy of the data. This is very fast.
The storage engine can then write a record of the change to the
transaction log, which is on disk and therefore durable. This is also a
relatively fast operation, because appending log events involves
sequential I/O in one small area of the disk instead of random I/O in
many places. Then, at some later time, a process can update the table
on disk. Thus, most storage engines that use this technique (known as
write-ahead logging) end up writing the changes to disk twice.

If there’s a crash after the update is written to the transaction log but
before the changes are made to the data itself, the storage engine can
still recover the changes upon restart. The recovery method varies
between storage engines.

Transactions in MySQL

Storage engines are the software that drives how data will be stored
and retrieved from disk. While MySQL has traditionally offered a
number of storage engines that support transactions, InnoDB is now
the golden standard and the recommended engine to use. Transaction
primitives described here will be based on transactions in the InnoDB
engine.

AUTOCOMMIT

By default, a single INSERT, UPDATE or DELETE statement is
implicitly wrapped in a transaction and committed immediately. This
is known as AUTOCOMMIT mode. By disabling this mode, you can
execute a series of statements within a transaction and at conclusion,
COMMIT or ROLLBACK.

You can enable or disable the AUTOCOMMIT variable for the
current connection by using a SET command. The values 1 and ON
are equivalent, as are 0 and OFF. When you run with
AUTOCOMMIT=0, you are always in a transaction, until you issue a
COMMIT or ROLLBACK. MySQL then starts a new transaction
immediately. Additionally, with AUTOCOMMIT enabled, you can
begin a multi-statement transaction by using they keyword BEGIN or
START TRANSACTION. Changing the value of AUTOCOMMIT
has no effect on non-transactional tables which have no notion of
committing or rolling back changes.

Certain commands, when issued during an open transaction, cause
MySQL to commit the transaction before they execute. These are
typically Data Definition Language (DDL) commands that make
significant changes, such as ALTER TABLE, but LOCK TABLES
and some other statements also have this effect. Check your version’s
documentation for the full list of commands that automatically
commit a transaction.

MySQL lets you set the isolation level using the SET
TRANSACTION ISOLATION LEVEL command, which takes effect
when the next transaction starts. You can set the isolation level for the
whole server in the configuration file, or just for your session:

mysql> SET SESSION TRANSACTION ISOLATION LEVEL READ

COMMITTED;

MySQL recognizes all four ANSI standard isolation levels, and
InnoDB supports all of them.

MIXING STORAGE ENGINES IN TRANSACTIONS

MySQL doesn’t manage transactions at the server level. Instead, the
underlying storage engines implement transactions themselves. This
means you can’t reliably mix different engines in a single transaction.

If you mix transactional and non transactional tables (for instance,
InnoDB and MyISAM tables) in a transaction, the transaction will
work properly if all goes well.

However, if a rollback is required, the changes to the non
transactional table can’t be undone. This leaves the database in an
inconsistent state from which it might be difficult to recover and
renders the entire point of transactions moot. This is why it is really
important to pick the right storage engine for each table and to avoid
mixing storage engines in your application logic at all costs.

MySQL will not usually warn you or raise errors if you do
transactional operations on a non transactional table. Sometimes
rolling back a transaction will generate the warning “Some non
transactional changed tables couldn’t be rolled back,” but most of the
time, you’ll have no indication you’re working with non transactional
tables.

WARNING
It is best practice to not mix storage engines in your application. Failed
transactions can lead to inconsistent results as some parts can roll back and
others cannot.

IMPLICIT AND EXPLICIT LOCKING

InnoDB uses a two-phase locking protocol. It can acquire locks at
any time during a transaction, but it does not release them until a
COMMIT or ROLLBACK. It releases all the locks at the same time.
The locking mechanisms described earlier are all implicit. InnoDB
handles locks automatically, according to your isolation level.

However, InnoDB also supports explicit locking, which the SQL
standard does not mention at all:

SELECT ... FOR SHARE

SELECT ... FOR UPDATE

(

SELECT … FOR SHARE is a MySQL 8.0 feature which replaces
SELECT … LOCK IN SHARE MODE of previous versions.

)

MySQL also supports the LOCK TABLES and UNLOCK TABLES
commands, which are implemented in the server, not in the storage
engines. These have their uses, but they are not a substitute for
transactions. If you need transactions, use a transactional storage
engine. Because InnoDB supports row level locking, LOCK TABLES
is unnecessary.

TIP
The interaction between LOCK TABLES and transactions is complex, and there
are unexpected behaviors in some server versions. Therefore, we recommend
that you never use LOCK TABLES unless you are in a transaction and
AUTOCOMMIT is disabled, no matter what storage engine you are using.

 6

Multiversion Concurrency Control

Most of MySQL’s transactional storage engines don’t use a simple
row-locking mechanism. Instead, they use row-level locking in
conjunction with a technique for increasing concurrency known as
multiversion concurrency control (MVCC). MVCC is not unique to
MySQL: Oracle, PostgreSQL, and some other database systems use it
too, although there are significant differences because there is no
standard for how MVCC should work.

You can think of MVCC as a twist on row-level locking; it avoids the
need for locking at all in many cases and can have much lower
overhead. Depending on how it is implemented, it can allow
nonlocking reads, while locking only the necessary rows during write
operations.

MVCC works by keeping a snapshot of the data as it existed at some
point in time. This means transactions can see a consistent view of
the data, no matter how long they run. It also means different
transactions can see different data in the same tables at the same time!
If you’ve never experienced this before, it might be confusing, but it
will become easier to understand with familiarity.

Each storage engine implements MVCC differently. Some of the
variations include optimistic and pessimistic concurrency control.
We’ll illustrate one way MVCC works by explaining a simplified
version of InnoDB’s behavior.

InnoDB implements MVCC by storing with each row two additional,
hidden values that record when the row was created and when it was
expired (or deleted). Rather than storing the actual times at which
these events occurred, the row stores the system version number at
the time each event occurred. This is a number that increments each
time a transaction begins. Each transaction keeps its own record of
the current system version, as of the time it began. Each query has to
check each row’s version numbers against the transaction’s version.
Let’s see how this applies to particular operations when the
transaction isolation level is set to REPEATABLE READ:

SELECT

InnoDB must examine each row to ensure that it meets

two criteria: InnoDB must find a version of the row that

is at least as old as the transaction (i.e., its version must

be less than or equal to the transaction’s version). This

ensures that either the row existed before the transaction

began, or the transaction created or altered the row. The

row’s deletion version must be undefined or greater than

the transaction’s version. This ensures that the row wasn’t

deleted before the transaction began. Rows that pass both

tests may be returned as the query’s result.

INSERT

InnoDB records the current system version number with

the new row.

DELETE

InnoDB records the current system version number as the

row’s deletion ID.

UPDATE

InnoDB writes a new copy of the row, using the system

version number for the new row’s version. It also writes

the system version number as the old row’s deletion

version.

The result of all this extra record keeping is that most read queries
never acquire locks. They simply read data as fast as they can,
making sure to select only rows that meet the criteria. The drawbacks
are that the storage engine has to store more data with each row, do
more work when examining rows, and handle some additional
housekeeping operations.

MVCC works only with the REPEATABLE READ and READ
COMMITTED isolation levels. READ UNCOMMITTED isn’t
MVCC-compatible because queries don’t read the row version that’s
appropriate for their transaction version; they read the newest
version, no matter what. SERIALIZABLE isn’t MVCC-compatible
because reads lock every row they return.

 7

Replication

MySQL is designed for accepting writes on one node at any given
time. This has advantages in managing consistency but leads to trade
offs when you need the data written in multiple servers or multiple
locations. MySQL offers a native way to distribute writes that one
node takes to additional nodes. This is referred to as replication. In
MySQL, replication works in a “pull model” meaning replicas
periodically query the source host for the latest binlog location and
pull binary logs as needed. In this diagram we show a simple example
of this setup usually called “a topology tree” of multiple MySQL
servers in a source and replica setup.

Figure 1-2. A simplified view of a MySQL server replication topology

For any data you run in production, you should use replication and
have at least 3 more replicas, ideally distributed in different locations

(in cloud hosted environments, known as regions) for disaster
recovery planning.

Over the years, replication in MySQL gained more sophistication.
From global transaction identifiers, multi source replication, parallel
replication on replicas, and semi sync replication being some of the
major updates. We will be covering replication in a lot more detail in
Chapter 9.

MySQL’s Storage Engines

This section gives an overview of MySQL’s storage engines. Storage
engine is the layer in MySQL that handles persistence of your data.
The different engines in MySQL mean you can have different
behaviours based on your application requirements. We will be
talking about choosing engines in the next chapter. Since engine
support and how MySQL stores information about the tables change
dramatically between 5.7 and 8.0, we will refer explicitly to version
names as we go on. Even this book, though, isn’t a complete source
of documentation; you should read the MySQL manuals for the
storage engines you decide to use.

In versions before 8.0, MySQL stored each database (also called a
schema) as a subdirectory of its data directory in the underlying
filesystem. When you created a table, MySQL stored the table
definition in an .frm file and an .ibd file that stored the data. Both
files are named after the table they represent. Thus, when you create a
table named MyTable, MySQL stores the table definition in
MyTable.frm and the data in MyTable.ibd . If you used partitions you
would also see MyTable.par .

In version 8.0, MySQL redesigned table metadata into a data
dictionary that is included with a table’s . ibd file. This makes
information on the table structure support transactions and atomic
data definition changes. Instead of relying only on
information_schema for retrieving table definition and metadata
during operations, we are introduced to the dictionary object cache

which is an LRU based in memory cache of partition definitions,
table definitions, stored program definitions, charset and collation
information. This major change in how the server accesses metadata
about tables reduces IO and is efficient especially if a subset of tables
is what sees the most activity and therefore is in the cache most often.
The .ibd and .frm files are replaced with serialized dictionary
information (.sdi) per table.

Now that we have covered how table metadata and file structure has
changed between the recent major versions, we’ll go into an overview
of the most recommended and used native storage engine in MySQL,
Innodb.

The InnoDB Engine

InnoDB is the default transactional storage engine for MySQL and
the most important and broadly useful engine overall. It was designed
for processing many short-lived transactions that usually complete
rather than being rolled back. Its performance and automatic crash
recovery make it popular for non-transactional storage needs, too.If
you want to study storage engines, it is also well worth your time to
study InnoDB in depth to learn as much as you can about it, rather
than studying all storage engines equally.

NOTE
It is best practice to use the InnoDB storage engine as the default engine for any
application

InnoDB is the default MySQL general purpose storage engine. By
default, InnoDB stores its data in a series of data files that are
collectively known as a tablespace . A tablespace is essentially a
black box that InnoDB manages all by itself.

InnoDB uses MVCC to achieve high concurrency, and it implements
all four SQL standard isolation levels. It defaults to the
REPEATABLE READ isolation level, and it has a next-key locking
strategy that prevents phantom reads in this isolation level: rather
than locking only the rows you’ve touched in a query, InnoDB locks
gaps in the index structure as well, preventing phantoms from being
inserted.

InnoDB tables are built on a clustered index , which we will cover in
detail in chapter 8 when we discuss schema design. InnoDB’s index
structures are very different from those of most other MySQL storage
engines. As a result, it provides very fast primary key lookups.
However, secondary indexes (indexes that aren’t the primary key)
contain the primary key columns, so if your primary key is large,
other indexes will also be large. You should strive for a small primary
key if you’ll have many indexes on a table.

InnoDB has a variety of internal optimizations. These include
predictive read-ahead for prefetching data from disk, an adaptive
hash index that automatically builds hash indexes in memory for very
fast lookups, and an insert buffer to speed inserts. We cover these
later in this book.

InnoDB’s behavior is very intricate, and we highly recommend
reading the “InnoDB Locking and Transaction Model” section of the
MySQL manual if you’re using InnoDB. There are many subtleties
you should be aware of before building an application with InnoDB,
because of its MVCC architecture. Working with a storage engine
that maintains consistent views of the data for all users, even when
some users are changing data, can be complex.

As a transactional storage engine, InnoDB supports truly “hot” online
backups through a variety of mechanisms, including Oracle’s
proprietary MySQL Enterprise Backup and the open source Percona
XtraBackup.

Beginning with MySQL 5.6, InnoDB introduced Online DDL which
at first had limited use cases that expanded in the 5.7 and 8.0 releases.
In place schema changes allow for specific table changes without a
full table lock and without using external tools which greatly
improved the operationality of MySQL InnoDB tables. We will be
covering options for online schema changes, both native and external
tools in chapter 11.

JSON document support

One of the most notable additions to MySQL in 5.7 and 8.0 is
extensive support of JSON data type that goes further than simple
BLOB storage. Long requested and a feature in other relational
database offerings for a long while, such as Postgres, this new rich
datatype makes a class of business needs a first class citizen in
MySQL and brings the guarantees of the InnoDB storage engine to a
fast growing class of data modeling.

First introduced to InnoDB as part of the 5.7 release, the JSON type
arrived with automatic validation of JSON documents, optimized
storage that allowed for quick read access. A significant improvement
to the tradeoffs of old style BLOB storage engineers used to resort to
for JSON documents.

Along with the new datatype support, InnoDB also introduced SQL
functions to support rich operations on JSON documents.

A further improvement in MySQL 8.0.7, adds the ability to define
multi-valued indexes on JSON arrays. This feature can be a powerful
way to even further speed read access queries to JSON types by
matching the common access patterns to functions that can map the
JSON document values.

Other Built-in MySQL Engines

MySQL has a variety of special-purpose storage engines. Many of
them are deprecated in newer versions, for various reasons. Some of
these are still available on the server, but must be enabled specially.

THE MYISAM ENGINE

MyISAM was the first engine in MySQL and was the default one
until the release of MySQL 5.6. It does not support transactions or
row based locks which makes for a much simpler concurrency model
(only one write can ever happen at a given time) but much more
limited use in modern applications. With the release of MySQL 5.6 in
2013, MyISAM was no longer the default engine in MySQL. In
MySQL 8.0 it was completely removed.

THE ARCHIVE ENGINE

The Archive engine supports only INSERT and SELECT queries, and
it does not support indexes until MySQL 5.1. It causes much less disk
I/O than MyISAM, because it buffers data writes and compresses
each row with zlib as it’s inserted. Also, each SELECT query requires
a full table scan. Archive tables are thus best for logging and data
acquisition, where analysis tends to scan an entire table, or where you
want fast INSERT queries.

Archive supports row-level locking and a special buffer system for
high-concurrency inserts. It gives consistent reads by stopping a
SELECT after it has retrieved the number of rows that existed in the
table when the query began. It also makes bulk inserts invisible until

they’re complete. These features emulate some aspects of
transactional and MVCC behaviors, but Archive is not a transactional
storage engine. It is simply a storage engine that’s optimized for high-
speed inserting and compressed storage.

THE BLACKHOLE ENGINE

The Blackhole engine has no storage mechanism at all. It discards
every INSERT instead of storing it. However, the server writes
queries against Blackhole tables to its logs, so they can be replicated
or simply kept in the log. That makes the Blackhole engine popular
for fancy replication setups and audit logging, although we’ve seen
enough problems caused by such setups that we don’t recommend
them.

THE CSV ENGINE

The CSV engine can treat comma-separated values (CSV) files as
tables, but it does not support indexes on them. This engine lets you
copy files into and out of the database while the server is running. If
you export a CSV file from a spreadsheet and save it in the MySQL
server’s data directory, the server can read it immediately. Similarly,
if you write data to a CSV table, an external program can read it right
away. CSV tables are thus useful as a data interchange format.

THE FEDERATED ENGINE

This storage engine is sort of a proxy to other servers. It opens a
client connection to another server and executes queries against a
table there, retrieving and sending rows as needed. It was originally
marketed as a competitor to features supported in many enterprise-

grade proprietary database servers, such as Microsoft SQL Server and
Oracle, but that was always a stretch, to say the least. Although it
seemed to enable a lot of flexibility and neat tricks, it has proven to
be a source of many problems and is disabled by default. A successor
to it, FederatedX, is available in MariaDB.

THE MEMORY ENGINE

Memory tables (formerly called HEAP tables) are useful when you
need fast access to data that either never changes or doesn’t need to
persist after a restart. Memory tables can be up to an order of
magnitude faster than InnoDB tables. All of their data is stored in
memory, so queries don’t have to wait for disk I/O. The table
structure of a Memory table persists across a server restart, but no
data survives.

Here are some good uses for Memory tables:

For “lookup” or “mapping” tables, such as a table that maps
postal codes to state names

For caching the results of periodically aggregated data

For intermediate results when analyzing data

Memory tables support HASH indexes, which are very fast for
lookup queries. Although Memory tables are very fast, they often
don’t work well as a general-purpose replacement for disk-based
tables. They use table-level locking, which gives low write
concurrency. They do not support TEXT or BLOB column types, and
they support only fixed-size rows, so they really store VARCHARs as

CHARs, which can waste memory. (Some of these limitations are
lifted in Percona Server.)

MySQL uses the Memory engine internally while processing queries
that require a temporary table to hold intermediate results. If the
intermediate result becomes too large for a Memory table, or has
TEXT or BLOB columns, MySQL will convert it to a MyISAM table
on disk and in 8.0 will even convert it to the safer InnoDB engine. We
say more about this in chapters 7 and 12.

People often confuse Memory tables with temporary tables, which
are ephemeral tables created with CREATE TEMPORARY TABLE.
Temporary tables can use any storage engine; they are not the same
thing as tables that use the Memory storage engine. Temporary tables
are visible only to a single connection and disappear entirely when
the connection closes.

THE MERGE STORAGE ENGINE

The Merge engine is a variation of MyISAM. A Merge table is the
combination of several identical MyISAM tables into one virtual
table. This can be useful when you use MySQL in logging and data
warehousing applications, but it has been deprecated in favor of
partitioning (see Chapter 7).

THE NDB CLUSTER ENGINE

MySQL AB acquired the NDB database from Sony Ericsson in 2003
and built the NDB Cluster storage engine as an interface between the
SQL used in MySQL and the native NDB protocol. The combination

of the MySQL server, the NDB Cluster storage engine, and the
distributed, shared-nothing, fault-tolerant, highly available NDB
database is known as MySQL Cluster.

Now that we covered all table engines included in MySQL’s releases,
you should know that in chapter 2 we will cover notable third party
engines and how to choose among all these options depending on
your use case.

Summary

MySQL has a layered architecture, with server-wide services and
query execution on top and storage engines underneath. Although
there are many different plugin APIs, the storage engine API is the
most important. If you understand that MySQL executes queries by
handing rows back and forth across the storage engine API, you’ve
grasped one of the core fundamentals of the server’s architecture.

In the past few major releases, MySQL has settled on InnoDB as its
primary development focus and has moved even its internal
bookkeeping around table metadata, authentication and authorization
to InnoDB after years in MyISAM. This increased investment from
Oracle in the InnoDB engine has led to major improvements such as
atomic DDLs, more robust Online DDLs, better resilience to crashes,
and better operability for security minded deployments.

1 One exception is InnoDB, which does parse foreign key definitions, because the
MySQL server doesn’t yet implement them itself.

2 MySQL 5.5 and newer versions support an API that can accept thread-pooling plugins
though not commonly used. The common practice for thread pooling is done at access
layers which we discuss in Chapter 5

3 We will cover in chapter 13 more techniques of schema changes including ONLINE
native alter statements and tools that provide online, lock free schema changes

4 There are metadata locks which are used when dealing with table name changes or
changing schemas and in 8.0 we are introduced to “application level locking
functions”. But in the course of run of the mill data changes, internal locking is left to
the InnoDB engine.

5 Read a summary of ANSI SQL at by Adrian Coyler
https://blog.acolyer.org/2016/02/24/a-critique-of-ansi-sql-isolation-levels/ and an
explanation of consistency models by Kyle Kingsbury in http://jepsen.io/consistency

6 These locking hints are frequently abused and should usually be avoided.

7 There is no formal standard that defines MVCC, so different engines and databases
implement it very differently, and no one can say any of them is wrong.

https://blog.acolyer.org/2016/02/24/a-critique-of-ansi-sql-isolation-levels/
http://jepsen.io/consistency

Chapter 2. Scaling MySQL

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s raw
and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be Chapter 11 of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at vwilson@oreilly.com.

Running MySQL in a personal project, or even in a young company,
is very different from running it in a business with an established
market and ‘hockey stick growth’ where traffic is growing orders of
magnitude year over year, and the product complexity and
accompanying data needs are accelerating.

In this chapter, we explain what scaling means and walk you through
the different axes where you may need to scale. We explore why read
scaling is essential and show you how to accomplish it safely, with
strategies like queuing for making scaling writes more predictable.
Finally, we cover sharding datasets to scale writes using tools like
ProxySQL and Vitess. By the end of this chapter, you should be able

to identify what seasonal pattern your system has, how to scale reads,
and how to scale writes.

What Is Scaling?

Scaling is the system’s ability to support growing traffic without
resorting to a linear increase of the infrastructure and headcount
costs. A well scaling system needs little to no increase in
infrastructure cost to support growing traffic. Systems that do not
scale well reach a point of diminishing returns and can’t grow further
without significant increase in cost.

Capacity is a related concept. The system’s capacity is the amount of
work it can perform in a given amount of time. However, capacity
must be qualified. The system’s maximum throughput is not the same
as its capacity. Most benchmarks measure a system’s maximum
throughput, but you can’t push real systems that hard. If you do,
performance will degrade, and response times will become
unacceptably large and variable. We define the system’s actual
capacity as the throughput it can achieve while still delivering
acceptable performance.

Capacity and scalability are independent of performance. To make an
analogy with cars on a highway:

The system is the highway and all the lanes and cars in it.

Performance is how fast the car is.

Capacity is the number of lanes times the maximum safe
speed.

 1

Scalability is the degree to which you can add more cars and
more lanes without slowing traffic.

In this analogy, scalability depends on factors such as how well the
interchanges are designed, how many cars have accidents or break
down, and whether the cars drive at different speeds or change lanes a
lot—but generally, scalability does not depend on how powerful the
cars’ engines are. This is not to say that performance doesn’t matter,
because it does. We’re just pointing out that systems can be scalable
even if they aren’t high-performance.

From the 50,000-foot view, scalability is the ability to add capacity
by adding resources.

Even if your MySQL architecture is scalable, your application might
not be. If it’s hard to increase capacity for any reason, your
application isn’t scalable overall. We defined capacity in terms of
throughput a moment ago, but it’s worth looking at capacity from the
same 50,000-foot view. From this vantage point, capacity simply
means the ability to handle load, and it’s useful to think of load from
several different angles:

Quantity of data

The sheer volume of data your application can

accumulate is one of the most common scaling

challenges. This is particularly an issue for many of

today’s web applications, which never delete any data.

Social networking sites, for example, typically never

delete old messages or comments.

Number of users

Even if each user has only a small amount of data, if you

have a lot of users it adds up—and the data size can grow

disproportionately faster than the number of users. Many

users generally means more transactions too, and the

number of transactions might not be proportional to the

number of users. Finally, many users (and more data) can

mean increasingly complex queries, especially if queries

depend on the number of relationships among users. (The

number of relationships is bounded by (N * (N–1)) / 2,

where N is the number of users.)

User activity

Not all user activity is equal, and user activity is not

constant. If your users suddenly become more active, for

example because of a new feature they like, your load can

increase significantly. User activity isn’t just a matter of

the number of page views, either—the same number of

page views can cause more work if part of the site that

requires a lot of work to generate becomes more popular.

Some users are much more active than others, too: they

might have many more friends, messages, or photos than

the average user.

Size of related datasets

If there are relationships among users, the application

might need to run queries and computations on entire

groups of related users. This is more complex than just

working with individual users and their data. Social

networking sites often face challenges due to popular

groups or users who have many friends.

Read Versus Write Bound Loads

One of the first things you should examine when thinking about
scaling your database architecture is whether you are scaling a read
bound load or a write bound load.

If we are to assume that at the beginning of designing your product
you took the shortcut of using the one source host for all database
traffic, it is clear at this point that adding more application resources
may scale the client’s serving requests but will ultimately be capped
by the ability of your one source database host to respond to these
read requests. This is a read bound load, and this is where scaling
read traffic using replicas comes in. We will discuss later in this
chapter how to scale your reads using read replica pools, how to
healthcheck these pools, and what pitfalls to avoid when you start
using that architecture.

You may also be encountering a write bound load. Perhaps signups
are growing exponentially; or it is peak ecommerce season and sales
are growing, along with the number of orders to track; or it is election
season and you have a lot of campaign communication going out—all
of these are business use cases that lead to exponentially more
database writes that you now have to scale. Again, a single source
database, even if you can scale it up for some time, can only go so
far. When the bottleneck is the write volume, you have to start
thinking about ways to split your data so you can accept writes in
parallel on separate subsets. We will talk about how to shard for write
scaling later in this chapter as well.

A logical question at this point is “what if I am seeing both types of
growth?”. It is important to closely inspect your schema and identify
whether there is a subset of tables growing faster in reads vs another
subset growing in write needs. Trying to scale a database cluster for
both at the same time is asking for a lot of pain and incidents. We
recommend separating tables in different functional clusters to
independently scale reads and writes; this is a prerequisite for making
scaling read traffic with read pools far more impactful.

Now that you have determined whether you have a read or write
bound load, let’s talk about how to scale for read bound loads using
replica read pools.

Scaling Reads with Read Pools

Replicas in a cluster serve more than one purpose. First and foremost,
they are candidates for failing over writes either in a planned or
unplanned manner when the current source needs to be taken out of
service for any reason. But since these replicas are also constantly
running updates to match the data in the source, you can use them to
serve read requests as well.

In Fig 11-1, we start by getting a visual of what this new setup with
read replica pools looks like.

Figure 2-1. Application nodes using a virtual IP to access read replicas

For the sake of simplicity, we will pretend application nodes still
fulfill write requests by directly connecting to the source database.
We will later talk about how that specific part scales better. Note
though that the same application nodes connect to a virtual IP which
acts as a middle layer between them and the read replicas. This is a

replica read pool, and this is how you spread the growing read load to
more than one host. You may also note that not all replicas are in the
pool. That is a common way to prevent different read workloads from
affecting each other. If you have reporting processes, or your backup
process tends to consume all the disk I/O resources, it is prudent to
leave out one or more replica nodes to fulfill those tasks and exclude
it from the read pool that serves customer facing traffic.

The flexibility of turning your read replicas into interchangeable
resources grows significantly when there is a single point the
application talks to for reads and you can manage these resources
seamlessly without impact to your customers.

Now that the database hosts serving read requests are more than one,
there are a few things to consider for smooth production sailing:

How do you route traffic to all these read replicas?

How do you evenly distribute the load?

How do you run health checks and remove unhealthy or
lagged replicas to avoid serving stale data?

How do you avoid accidentally removing all of the nodes,
causing more damage to the application traffic?

A very common way of managing these read pools is using a load
balancer to run a virtual IP that acts as a middle man for all traffic
meant to go to the read replicas. Technologies for this include
HAProxy, Hardware Load Balancer if you self host, or a Network
Load Balancer if you are running in a public cloud environment. In

the case of using HAProxy, all application hosts will connect to that
one ‘frontend’ and HAProxy takes care of directing those requests to
one of the read replicas defined in the backend. Tooling that
facilitates sharding, such as Vitess and ProxySQL, can also act in a
load balancer fashion. We’ll cover these tools towards the end of the
chapter.

Managing Configuration for Read Pools

Now that you have a ‘gate’ between the application nodes and your
replicas, you need a way to easily manage the nodes included, or not
included, in this read pool using your load balancer of choice. You do
not want this to be a manually managed configuration. You are
already on a trajectory of scaling to lots of database instances, and
managing configuration files manually will lead to mistakes, slower
response time to host failures and simply does not scale.

Service discovery is a good type of service to use here for
automatically discovering what hosts can be in this list. This may
mean deploying a service discovery solution as part of your tech
stack, or relying on a managed service discovery option at your cloud
provider if that is available. The important thing to be careful with
here is to be very specific on the criteria that make a read replica
qualify for this read pool. Ideally, you exclude the source node, and
potentially one or more replicas dedicated for reporting. But maybe
you need something even more complex where the replicas are
further segmented to serve different application read loads? We
recommend at minimum 3 nodes per pool of replicas serving a
specific purpose in addition to your backups/reporting server and the
source node.

Whether you run your own service discovery or use something
offered in your cloud, you should be aware of the guarantees of that
service. How soon can it detect the failure of a host? How fast does
that data propagate? When there is a failure how will the

configuration refresh on your load balancer, and does it do it as a
background process or will it require severing existing connections?

With flexibility comes complexity, and you must balance the two for
optimal outcomes in production when failures happen. Your job here
is to always tether your decisions to what SLIs and SLOs are being
pursued and not to achieve a mythical 100% uptime goal.

Now that you know how to populate the configurations and update
them as hosts come and go, it’s time to talk about how to run health
checks for the members of a replica read pool.

Health Checks for Read Pools

At this point you will need to consider what are the acceptable
criteria that deem a read replica healthy and ready to accept read
traffic from the application. These criteria can be as simple as “the
DB process is up and running, the port responds” and can become
more complex such as “the database is up, and replication lag needs
to be no more than 30 seconds, and read queries need to be running at
a latency no higher than 100 ms”. Deciding how far to take these
health checks should be a conversation with your application
developer teams so that everyone understands and aligns on what
behavior they expect when reading from the database. Here are some
questions to ask the team that can help guide this decision process:

How much data staleness is acceptable? If the data returned is
a few minutes old, what does that affect?

What is the maximum acceptable query latency for the
application?

What, if any, retry logic exists for read queries, and if it exists
is it exponential backoff?

Do we already have an SLO for the application? Does that
SLO extend to query latency or only address uptime?

How does the system behave in the absence of this data? Is
that degradation acceptable? if so for how long?

In many cases, you will be fine only using a port check for proving
the MySQL process liveness to deem it healthy. This means as long

as the database is running it will be part of that pool and serving
requests.

However, sometimes you may need something more sophisticated
because the dataset involved is critical enough that you do not want
to serve it when replication lags more than a few seconds or if
replication is not running at all. For these scenarios you can still use
read pool, but augment the health check with an HTTP check. The
way this works is that your load balancer of choice will run a
command (usually a script) and, based on the response code, will
determine if the node is healthy or not. In HAProxy, for example, the
backend would have lines of code like this:

option httpchk GET /check-lag

This line means that for every host in the read pool, the load balancer
will call the path /check-lag using a GET call and inspect the
response code. That path runs a script that holds the logic as to how
much lag is acceptable. The script compares existing lag status with
that threshold and, depending on that, the load balancer either
considers the replica healthy or not.

WARNING
While they are a powerful tool, be careful with using health checks with
complex logic in them (such as the lag check described above)and make sure
you have a plan for “what to do if all replicas in the pool fail the health checks”.
You can have a static ‘fallback’ pool that brings all the nodes back in for certain
global failures (e.g., the entire cluster is lagged) to avoid accidentally breaking
all read requests. For more detail on how one company has implemented this,
you can look at this post by Github . 2

Choosing a Load Balancing Algorithm

There are many different algorithms to determine which server
should receive the next connection. Each vendor uses different
terminology, but this list should provide an idea of what’s available:

Random

The load balancer directs each request to a server selected

at random from the pool of available servers.

Round-robin

The load balancer sends requests to servers in a repeating

sequence: A, B, C, A, B, C, etc.

Fewest connections

The next connection goes to the server with the fewest

active connections.

Fastest response

The server that has been handling requests the fastest

receives the next connection. This can work well when

the pool contains a mix of fast and slow machines.

However, it’s very tricky with SQL when the query

complexity varies widely. Even the same query can

perform very differently under different circumstances,

such as when it’s served from the query cache or when

the server’s caches already contain the needed data.

Hashed

The load balancer hashes the connection’s source IP

address, which maps it to one of the servers in the pool.

Each time a connection request comes from the same IP

address, the load balancer sends it to the same server. The

bindings change only when the number of machines in

the pool does.

Weighted

The load balancer can combine and add weight to several

of the other algorithms. For example, you might have

single- and dual-CPU machines. The dual-CPU machines

are roughly twice as powerful, so you can tell the load

balancer to send them an average of twice as many

requests.

The best algorithm for MySQL depends on your workload. The least-
connections algorithm, for example, might flood new servers when
you add them to the pool of available servers—before when their
caches are warmed up.

You’ll need to experiment to find the best performance for your
workload. Be sure to consider what happens in extraordinary
circumstances as well as in the day-to-day norm. It is in those

extraordinary circumstances—e.g., during times of high load, when
you’re doing schema changes, or when an unusual number of servers
go offline—that you can least afford something going terribly wrong.

We’ve described only instant-provisioning algorithms here, which
don’t queue connection requests. Sometimes algorithms that use
queuing can be more efficient. For example, an algorithm might
maintain a given concurrency on the database server, such as
allowing no more than N active transactions at the same time. If there
are too many active transactions, the algorithm can put a new request
in a queue and serve it from the first server that becomes “available”
according to the criteria. Some connection pools support queuing
algorithms.

Now that we have covered how to scale your read load and how to
health check it, it’s time to discuss scaling writes. Before looking for
how to scale the writes directly, you can look at places where
queueing can make the write traffic growth more manageable. Let’s
discuss how queueing can help scale your write performance.

Queuing

Scaling your application layer becomes a lot more complex when
scaling write transaction with a datastore that favors consistency over
availability by design. More application nodes writing to the one
source node will lead to a database system more susceptible to lock
timeouts, deadlocks, and failed writes to have to retry. All this will
ultimately lead to customer facing errors or unacceptable latencies.

Before looking into sharding the data, which we discuss next, you
should examine the write hotspots in your data and consider whether
all the writes are truly required to persist to the database actively. Can
some of them be placed into a queue and written to the database
within an acceptable time frame?

Let’s say you have a database that stores large datasets of customer
historical data. Customers occasionally send API (Application
Programming Interface) requests to retrieve this data but you also
need to support an API to delete this data. You can plausibly serve
read API calls from a growing number of replicas, but what about
deletes? The HTTP RFC allows for a response code 202 Accepted.
You can return that, place the request in a queue (e.g., Kafka, SQS)
and process these requests at the pace that doesn’t lead to overloading
the database directly with delete calls.

This is obviously not the same as a 200 response code which implies
the request has been instantaneously fulfilled. This is a common spot
where negotiation with your product team is crucial for making the

guarantees of the API plausible and achievable. The difference
between the 200 and 202 response codes is the difference of all the
engineering work that would work in sharding this data to support a
lot more parallel writes.

One important design choice to make if you do apply queuing to a
write load is to determine up front the desired time frame within
which these calls are expected to be fulfilled after being placed in
queue. Monitoring the growth of the time a request spends in a queue
is going to be your metric for when this strategy has run its course
and you really need to start splitting this data set to support more
parallel write load. You can do that using sharding, which we discuss
next.

Sharding

If you cannot manage write traffic growth with optimized queries and
queueing writes, then sharding is your next option.

Sharding means splitting your data into different, smaller, database
clusters so you can execute more writes on more source hosts at the
same time. There are 2 different kinds of sharding or partitioning you
can do-functional partitioning and data sharding.

Functional partitioning, or division of duties, means dedicating
different nodes to different tasks. An example of this might be putting
user records on one cluster and their billing on a different cluster.
This approach allows each cluster to scale independently. A surge in
user registrations might put a strain on the user cluster. With seperate
systems your billing cluster is less loaded, allowing you to bill
customers. Conversely, if your billing cycle is the first of the month,
you can run that knowing you won’t be impacting user registration.

Data sharding is the most common and successful approach for
scaling today’s very large MySQL applications. You shard the data by
splitting it into smaller pieces, or shards, and storing them on
different nodes.

Most applications shard only the data that needs sharding—typically,
the parts of the dataset that will grow very large. Suppose you’re
building a blogging service. If you expect 10 million users, you might
not need to shard the user registration information because you might

be able to fit all of the users (or the active subset of them) entirely in
memory. If you expect 500 million users, on the other hand, you
should probably shard this data. The user-generated content, such as
posts and comments, will almost certainly require sharding in either
case, because these records are much larger and there are many more
of them.

Large applications might have several logical datasets that you can
shard differently. You can store them on different sets of servers, but
you don’t have to. You can also shard the same data multiple ways,
depending on how you access it.

Choosing a Partitioning Scheme

The most important challenge with sharding is finding and retrieving
data. How you find data depends on how you shard it. There are
many ways to do this, and some are better than others.

The goal is to make your most important and frequent queries touch
as few shards as possible (remember, one of the scalability principles
is to avoid crosstalk between nodes). The most important part of that
process is choosing a partitioning key (or keys) for your data. The
partitioning key determines which rows should go onto each shard. If
you know an object’s partitioning key, you can answer two questions:

1. Where should I store this data?

2. Where can I find the data I need to fetch?

We’ll show you a variety of ways to choose and use a partitioning
key later. For now, let’s look at an example. Suppose we do as
MySQL’s NDB Cluster does, and use a hash of each table’s primary
key to partition the data across all the shards. This is a very simple
approach, but it doesn’t scale well because it frequently requires you
to check all the shards for the data you want. For example, if you
want user 3’s blog posts, where can you find them? They are
probably scattered evenly across all the shards, because they’re
partitioned by the primary key, not by the user. Using a primary key
hash makes it simple to know where to store the data, but it might
make it harder to fetch it, depending on which data you need and
whether you know the primary key.

Cross-shard queries are worse than single-shard queries, but as long
as you don’t touch too many shards, they might not be too bad. The
worst case is when you have no idea where the desired data is stored,
and you need to scan every shard to find it.

A good partitioning key is usually the primary key of a very
important entity in the database. These keys determine the unit of
sharding. For example, if you partition your data by a user ID or a
client ID, the unit of sharding is the user or client.

A good way to start is to diagram your data model with an entity-
relationship diagram, or an equivalent tool that shows all the entities
and their relationships. Try to lay out the diagram so that the related
entities are close together. You can often inspect such a diagram
visually and find candidates for partitioning keys that you’d
otherwise miss. Don’t just look at the diagram, though; consider your
application’s queries as well. Even if two entities are related in some
way, if you seldom or never join on the relationship, you can break
the relationship to implement the sharding.

Some data models are easier to shard than others, depending on the
degree of connectivity in the entity-relationship graph. Figure 11-2
depicts an easily sharded data model on the left, and one that’s
difficult to shard on the right.

Figure 2-2. Two data models, one easy to shard and the other difficult

The data model on the left is easy to shard because it has many
connected subgraphs consisting mostly of nodes with just one
connection, and you can “cut” the connections between the subgraphs
relatively easily. The model on the right is hard to shard, because
there are no such subgraphs. Most data models, luckily, look more
like the left hand diagram than the right hand one.

When choosing a partitioning key, try to pick something that lets you
avoid cross-shard queries as much as possible, but also makes shards
small enough that you won’t have problems with disproportionately
large chunks of data. You want the shards to end up uniformly small,
if possible, and if not, at least small enough that they’re easy to
balance by grouping different numbers of shards together. For
example, if your application is US-only and you want to divide your
dataset into 20 shards, you probably shouldn’t shard by state, because
California has such a huge population. But you could shard by county
or telephone area code, because even though these won’t be
uniformly populated, there are enough of them that you can still

3

choose 20 sets that will be roughly equally populated in total, and you
can choose them with an affinity that helps avoid cross-shard queries.

Multiple Partitioning Keys

Complicated data models make data sharding more difficult. Many
applications have more than one partitioning key, especially if there
are two or more important “dimensions” in the data. In other words,
the application might need to see an efficient, coherent view of the
data from different angles. This means you might need to store at
least some data twice within the system.

For example, you might need to shard your blogging application’s
data by both the user ID and the post ID, because these are two
common ways the application looks at the data. Think of it this way:
you frequently want to see all posts for a user, and all comments for a
post. Sharding by user doesn’t help you find comments for a post, and
sharding by post doesn’t help you find posts for a user. If you need
both types of queries to touch only a single shard, you’ll have to
shard both ways.

Just because you need multiple partitioning keys doesn’t mean you’ll
need to design two completely redundant data stores. Let’s look at
another example: a social networking book club website, where the
site’s users can comment on books. The website can display all
comments for a book, as well as all books a user has read and
commented on.

You might build one sharded data store for the user data and another
for the book data. Comments have both a user ID and a post ID, so
they cross the boundaries between shards. Instead of completely

duplicating comments, you can store the comments with the user
data. Then you can store just a comment’s headline and ID with the
book data. This might be enough to render most views of a book’s
comments without accessing both data stores, and if you need to
display the complete comment text, you can retrieve it from the user
data store.

Querying Across Shards

Most sharded applications have at least some queries that need to
aggregate or join data from multiple shards. For example, if the book
club site shows the most popular or active users, it must by definition
access every shard. Making such queries work well is the most
difficult part of implementing data sharding, because what the
application sees as a single query needs to be split up and executed in
parallel as many queries, one per shard. A good database abstraction
layer can help ease the pain, but even then such queries are so much
slower and more expensive than in-shard queries that aggressive
caching is usually necessary as well.

If you have chosen your sharding scheme well, cross-shard queries
should become the outlier not the norm. This means to strive to make
the most of your queries as simple as possible and contained within
one shard. For those cases where some cross shard aggregation is
needed, we recommend you make that part of the application logic.

Cross-shard queries can also benefit from summary tables. You can
build them by traversing all the shards and storing the results
redundantly on each shard when they’re complete. If duplicating the
data on each shard would be too wasteful, you can consolidate the
summary tables onto another data store, so they’re stored only once.

Non-sharded data often lives in the global node, with heavy caching
to shield it from the load.

Some applications use essentially random sharding when perfectly
even data distribution is important, or when there is no good
partitioning key. A distributed search application is a good example.
In this case, cross-shard queries and aggregation are the norm, not the
exception.

Querying across shards isn’t the only thing that’s harder with
sharding. Maintaining data consistency is also difficult. Foreign keys
won’t work across shards, so the normal solution is to check
referential integrity as needed in the application, or use foreign keys
within a shard, because internal consistency within a shard might be
the most important thing. It’s possible to use XA transactions , but
this is uncommon in practice because of the overhead.

You can also design cleanup processes that run intermittently. For
example, if a user’s book club account expires, you don’t have to
remove it immediately. You can write a periodic job to remove the
user’s comments from the per-book shard, and you can build a
checker script that runs periodically and makes sure the data is
consistent across the shards.

Now that we have explained the different ways you can split your
data across multiple clusters and how to choose a partitioning key,
let’s cover 2 of the most popular open source tools that can help
facilitate both sharding and partitioning.

 4

Vitess

Vitess is a database clustering system for MySQL. It originated
within YouTube then became PlanetScale, a separate product and
company headed by Jiten Vaidya and Sugu Sougoumarane.

It enables a number of features such as:

Horizontal sharding support. Including sharding the data

Topology management

Managing source node failover

Schema change management

Connection pooling

Query rewriting

Let’s explore Vitess’ architecture and its components.

VITESS ARCHITECTURE OVERVIEW

This diagram from Vitess’ website shows the different parts of its
architecture.

Figure 2-3. Vitess architecture diagram. Credit: vitess.io

Here are some terms you need to know:

Vitess Pod is the general encapsulation of a set of databases
and the Vitess related pieces that support sharding, managing
topology, managing schema changes and application access
to said databases

VTgate is the service that controls access to the database
instances for applications and operators trying to manage
topology, add nodes or shard some of the data. It is akin to
the load balancer in the architecture described previously.

VTTablet is the agent running on each database instance
managed by Vitess. It can receive DB management
commands from operators and execute them on the operators’
behalf

Topology Metadata store holds the inventory of database
instances managed by Vitess in a given pod, and also holds
accompanying information

vtctl is the command line tool to make operational changes to
a Vitess pod

vtctld is a graphical interface for the same management
operations

Vitess’s architecture starts with a consistent topology store that holds
definitions for all the clusters/MySQL instances and vtgate instances.
This consistent metadata store plays a crucial role in managing
topology changes. When an operator is looking to make a change to
the topology of a cluster managed by Vitess, it is really sending
commands, through a service called vtctl, to that datastore, which
then sends the component operations of that command to vtgate.

Vitess offers database operators that can deploy the vtgate layer and
the metadata store in kubernetes. Having its control plane in a
platform like Kubernetes increases its resilience to single points of
failure.

One of Vitess’s greatest strengths is its philosophy towards how to
scale MySQL, which includes the following.

A preference for using smaller instances. Split your data functionally,
horizontally or both. But smaller instances make for a smaller blast
radius when failures happen.

Replication and automated write failover increase resilience. Vitess
does not promise ‘100% online writes’ through multi writer node
tricks. Instead, it automates write failover, and during that failover

https://vitess.io/docs/overview/scalability-philosophy/

manages both the topology change and application access to the
database nodes to make the write downtime as short as possible.

Durability using semi-sync replication. Vitess strongly recommends
semi-sync replication (as opposed to the default asynchronous) to
ensure writes are always persisted by more than one node in the
database layer before acknowledging them to the application. This is
a crucial tradeoff in latency for the sake of guaranteed durability that
pays its dividends when Vitess needs to failover the writer host in an
unplanned manner.

These architectural principles can help sustain exponential growth in
your business traffic with a lot more resilience in the database layer
of your infrastructure. And many of these best practices listed above
you should heed regardless of whether you specifically use Vitess or
another solution as part of your architecture.

MIGRATING YOUR STACK TO VITESS

Vitess is an opinionated platform for running the database layer and is
not a drop-in solution. Therefore, you need to thoughtfully plan how
implementing such a transition would happen before you adopt it as
the access layer for your database.

Specifically, be sure to consider the following migration steps as you
evaluate Vitess as a possible solution:

Test and document the latency you’re introducing to the overall
system. Introducing a complex stack like Vitess to an application
stack will definitely add some amount of latency, especially when

you consider the enforcement of semi-sync replication. Make sure
this tradeoff is well documented and explicitly communicated so your
downstream dependencies are making informed decisions when
building service level objectives that rely on this database
architecture.

Use the canary deployment model. During the transition in
production, you can configure vttablet as ‘externally managed’. This
allows for both vttablet and direct connections to the database server
as you slowly ramp up the connection change through your
application node fleet.

Start sharding. Once all the application layer access is through
vtgate/vttablet and not directly to MySQL, you can start using the full
feature set of Vitess to split tables off in new clusters, shard data
horizontally for more write throughput, or simply add replicas for
more read load capacity .

Vitess is a powerful database access and management product that
has come a long way from its early days within YouTube at Google.
It has proven its ability to enable dramatic growth and a resilient
database infrastructure. However, this power and flexibility comes at
a cost of added complexity. Vitess is not as simple as a load balancer
passing through traffic and you should weigh the needs of the
business with the cost to introduce and maintain a database
management tool as complex as Vitess.

 5

 6

ProxySQL

ProxySQL is written specifically for the MySQL protocol and
released with a GPL license. René Cannaò, a DBA who has consulted
for many companies and long time MySQL contributor, is the
primary author. It is now a full fledged company that offers paid
support and development contracts of the ProxySQL product.

Let’s dig into some details about its architecture, configuration
patterns, use cases and features.

PROXYSQL ARCHITECTURE OVERVIEW

You can use ProxySQL as a layer in between any application code
and MySQL instances. ProxySQL provides a session aware, MySQL-
protocol-based interface for applications to interact with the
databases. Instead of applications opening connections directly to the
database instances, ProxySQL opens them on the application’s
behalf.

This design makes the proxy seem invisible to the application nodes.
Its session awareness allows for moving these connections between
mysql instances without downtime. This is especially useful when
you are dealing with applications no longer being invested in because
you can now utilize features in ProxySQL without needing to make
any changes to code you may not feel confident changing.

ProxySQL also provides powerful connection pooling. Connections
opened by applications to ProxySQL are separate from the

connections ProxySQL opens to database instances it is configured to
connect to. This separation allows for protecting the database
instances from sudden traffic spikes in the application layer from
impacting the databases.

When you have the ability to manage client side connections
separately from how many connections actually are made to the
database, you introduce flexibility you did not have before. You can
now scale out the application node pool without having to worry that
it will increase connection load to the database beyond what you want
to support. This allows for diverse scenarios of application and
business needs as we will explain in the common patterns when using
ProxySQL.

CONFIGURING PROXYSQL

ProxySQL uses a configuration file for startup but maintains its
runtime configuration both in memory and in an embedded SQLite
file that you can access directly and query using an admin interface.

ProxySQL’s admin interface allows you to issue commands to change
the running configuration then dump that new configuration out to
disk for persistence using MySQL commands. This allows you to
make zero downtime changes to a running ProxySQL instance. You
can also use this admin interface to make automated changes issued
by your configuration management or automated failover scripts. You
can see in Figure 11-4 the general idea of how your architecture
would leverage both ProxySQL and service discovery to provide a
robust access layer for services.

WARNING
It is important to note that while we show ‘ProxySQL’ as one object in this
diagram, we strongly recommend in production environments to leverage its
clustering mechanism and deploy multiple instances in a given stack. Never run
a Single Point of Failure (SPoF).

Figure 2-4. Figure showing the interaction between application nodes, ProxySQL and
service discovery’s role. Credit: Bill Sickles

ProxySQL has independent and hierarchical health checking for
databases it connects to. Based on the results of these health checks,
ProxySQL adds/removes hosts or adjusts traffic weights. You can
specify replication lag thresholds, time to connect successfully, and
connection retries on failure among many other configuration options
to control how much fault tolerance is acceptable within the context
of your service and application needs. These configuration options
allow ProxySQL to react accurately to unresponsive hosts by either
temporarily removing backend databases then repeating the health
check later, or by fully removing the struggling backend member
until an operator is involved.

COMMON USE CASES FOR PROXYSQL

Let’s discuss some common patterns where using ProxySQL can help
alleviate common issues in fast growing environments.

CONNECTION SHIELD FROM APPLICATIONS

In many applications, ‘open more connections to the database’ is a
common pattern we see when query latency starts to climb. However,
in practice this can lead to outages and tends to leave a lot of
connections idle, consuming resources but not doing any work. When
you open more connections by the application layer directly to the
database, the amount of resources the database server spends on
connection management also increases. This snowballs into
thousands of connections overwhelming already overloaded database
instances. All this activity leads to prolonged downtimes, failures
cascading in multiple microservices, and extended customer facing
impact.

ProxySQL’s connection management architecture helps shield the
database layer from unexpected application peaks by only opening to
the database the number of connections that can do work. ProxySQL
can reuse those connections for different client side requests. This
behavior maximizes the work that a single connection to the database
servers can do. This in turn reduces the amount of resources
managing connections and allows for more efficient use of the
database server memory resources.

OTHER NOTABLE FEATURES IN PROXYSQL

ProxySQL has a number of other features that are notable and that
stand out in a general use application proxy. These include:

 7

Query routing based on port, or user or simply a regex match

TLS support on both the frontend application connections
and backend connections to databases

Support for various MySQL flavors such as AWS Aurora,
Galera cluster or Clickhouse

Connection Mirroring

Result set caching

Query rewrites

Audit log

You can read about the extensive feature set of ProxySQL (which
goes well beyond sharding support) by visiting its documentation.

ProxySQL is a powerful tool you can use for scaling out your
application with proper performance protections for the database
layer and with added features that support all sorts of business needs
(like compliance, security rules, etc). If you are in a company that is
finding itself on a high growth trajectory with a robust mix of new
and less new services sharing database resources, it can be a powerful
tool in continuing that growth safely. ProxySQL provides easy to
deploy abstraction that can be more sophisticated than HAPrxoy but
with less upfront investment in infrastructure and complexity.
However it also does not offer some of the more advanced features
such as automated sharding of data sets, managing schema changes
and VReplication which is a powerful tool for enabling ETL
pipelines and compliance needs as we will discuss in chapter 14.

 8

 9

Summary

Scaling MySQL is a journey. You should come out of this chapter
more prepared to assess your scaling needs, and understanding how
to scale reads, how to scale writes and how to make your traffic
growth more predictable by adding queuing to your architecture. You
should also now understand sharding to scale writes and all the
complex decisions that come with that decision.

Running MySQL at the scale where you have hundreds of instances
complicates a lot of common tasks. Choosing how to grow with the
demand is only the beginning, which is why our next chapter is about
how to run MySQL at the scale of hundreds to thousands of
instances.

1 In the physical sciences, work per unit of time is called power, but in computing
“power” is such an overloaded term that it’s ambiguous and we avoid it. However, a
precise definition of capacity is the system’s maximum power output.

2 https://github.blog/2016-08-17-context-aware-mysql-pools-via-haproxy/

3 Thanks to the HiveDB project and Britt Crawford for contributing these elegant
diagrams.

4 https://dev.mysql.com/doc/refman/8.0/en/xa.html

5 https://www.cncf.io/wp-content/uploads/2020/03/Migrating-MySQL-to-Vitess-CNCF-
Webinar.pdf

6 This deployment strategy is explained in detail by Morgan Tocker in a talk at Kubecon
2019 at https://www.youtube.com/watch?v=OCS45iy5v1M

7 See https://en.wikipedia.org/wiki/Thundering_herd_problem

8 https://proxysql.com/documentation/

https://github.blog/2016-08-17-context-aware-mysql-pools-via-haproxy/
https://www.cncf.io/wp-content/uploads/2020/03/Migrating-MySQL-to-Vitess-CNCF-Webinar.pdf
https://www.youtube.com/watch?v=OCS45iy5v1M
https://en.wikipedia.org/wiki/Thundering_herd_problem
https://proxysql.com/documentation/

9 https://vitess.io/docs/reference/vreplication/

About the Authors
Silvia Botros is a senior principal engineer at Twilio. During her time
at SendGrid, she helped deploy and maintain various MySQL
datastores that support the mail pipeline and other products that
SendGrid offers and to drive MySQL designs from inception to
production.

Jeremy Tinley is a senior staff engineer at Etsy, with over 20 years
of MySQL experience. Throughout his career, he has managed tens
of thousands of MySQL instances with an eye towards availability,
reliability, and operational efficiency.

	1. MySQL Architecture
	MySQL’s Logical Architecture
	Connection Management and Security
	Optimization and Execution

	Concurrency Control
	Read/Write Locks
	Lock Granularity

	Transactions
	Isolation Levels
	Deadlocks
	Transaction Logging
	Transactions in MySQL

	Multiversion Concurrency Control
	Replication
	MySQL’s Storage Engines
	The InnoDB Engine
	JSON document support
	Other Built-in MySQL Engines
	Summary

	2. Scaling MySQL
	What Is Scaling?
	Read Versus Write Bound Loads
	Scaling Reads with Read Pools
	Managing Configuration for Read Pools
	Health Checks for Read Pools
	Choosing a Load Balancing Algorithm

	Queuing
	Sharding
	Choosing a Partitioning Scheme
	Multiple Partitioning Keys
	Querying Across Shards
	Vitess
	ProxySQL

	Summary

