
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Brian Messenlehner and Jason Coleman

Building Web Apps with
WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Building Web Apps with WordPress
by Brian Messenlehner and Jason Coleman

Copyright © 2014 Brian Messenlehner and Jason Coleman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Allyson MacDonald
Production Editor: Nicole Shelby
Copyeditor: Charles Roumeliotis
Proofreader: Amanda Kersey

Indexer: Ellen Troutman
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

April 2014: First Edition

Revision History for the First Edition:

2014-04-07: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449364076 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Building Web Apps with WordPress, the picture of a common iguana, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36407-6

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449364076
http://www.it-ebooks.info/

Table of Contents

Preface. xv
Foreword. xxi

1. Building Web Apps with WordPress. 1
What Is a Website? 1
What Is an App? 1
What Is a Web App? 1

Features of a Web App 2
Why Use WordPress? 3

You Are Already Using WordPress 4
Content Management Is Easy with WordPress 4
User Management Is Easy and Secure with WordPress 4
Plugins 5
Flexibility Is Important 5
Frequent Security Updates 6
Cost 6
.NET App 6
WordPress App 7
Responses to Some Common Criticisms of WordPress 7

When Not to Use WordPress 10
You Plan to License or Sell Your Site’s Technology 10
There Is Another Platform That Will Get You “There” Faster 10
Flexibility Is NOT Important to You 11
Your App Needs to Be Highly Real Time 11

WordPress as an Application Framework 11
WordPress Versus MVC Frameworks 12

Anatomy of a WordPress App 15
What Is SchoolPress? 15
SchoolPress Runs on a WordPress Multisite Network 15

iii

www.it-ebooks.info

http://www.it-ebooks.info/

The SchoolPress Business Model 15
Membership Levels and User Roles 16
Classes Are BuddyPress Groups 16
Assignments Are a Custom Post Type 16
Submissions Are a (Sub)CPT for Assignments 17
Semesters Are a Taxonomy on the Class CPT 17
Departments Are a Taxonomy on the Class CPT 17
SchoolPress Has One Main Custom Plugin 17
SchoolPress Uses a Few Other Custom Plugins 18
SchoolPress Uses the StartBox Theme Framework 18

2. WordPress Basics. 21
WordPress Directory Structure 21

Root Directory 22
/wp-admin 22
/wp-includes 22
/wp-content 22

WordPress Database Structure 23
wp_options 23
Functions Found in /wp-includes/option.php 24
wp_users 26
Functions Found in /wp-includes/… 27
wp_usermeta 30
wp_posts 34
Functions found in /wp-includes/post.php 34
wp_postmeta 38
Functions Found in /wp-includes/post.php 38
wp_comments 42
Functions Found in /wp-includes/comment.php 42
wp_commentsmeta 46
Functions Found in /wp-includes/comment.php 47
wp_links 49
wp_terms 50
Functions Found in /wp-includes/taxonomy.php 50
wp_term_taxonomy 53
/wp-includes/taxonomy.php 53
wp_term_relationships 54

Extending WordPress 55

3. Leveraging WordPress Plugins. 57
The GPLv2 License 58
Installing WordPress Plugins 58

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Own Plugin 59
File Structure for an App Plugin 60

/adminpages/ 61
/classes/ 61
/css/ 62
/js/ 63
/images/ 63
/includes/ 63
/includes/lib/ 64
/pages/ 64
/services/ 65
/scheduled/ 65
/schoolpress.php 65

Add-Ons to Existing Plugins 66
Use Cases and Examples 66

The WordPress Loop 66
WordPress Global Variables 67
Action Hooks 77
Filters 77

Free Plugins 79
All in One SEO Pack 79
BadgeOS 79
Custom Post Type UI 80
Posts 2 Posts 80
Members 81
W3 Total Cache 81

Premium Plugins 81
Gravity Forms 81
Backup Buddy 81
WP All Import 82

Community Plugins 82
BuddyPress 82

4. Themes. 95
Themes Versus Plugins 95

When Developing Apps 95
When Developing Plugins 96
When Developing Themes 97

The Template Hierarchy 97
Page Templates 99

Sample Page Template 99
Using Hooks to Copy Templates 102

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use a Theme Template 103
Theme-Related WP Functions 103

Using locate_template in Your Plugins 104
Style.css 106

Versioning Your Theme’s CSS Files 106
Functions.php 108
Themes and Custom Post Types 108
Popular Theme Frameworks 108

WP Theme Frameworks 109
Non-WP Theme Frameworks 110

Creating a Child Theme for StartBox 111
Including Bootstrap in Your App’s Theme 111
Menus 113

Nav Menus 113
Dynamic Menus 114

Responsive Design 115
Device and Display Detection in CSS 115
Device and Feature Detection in JavaScript 116
Device Detection in PHP 118
Final Note on Browser Detection 122

Versioning CSS and JS Files 122

5. Custom Post Types, Post Metadata, and Taxonomies. 125
Default Post Types and Custom Post Types 125

Page 125
Post 125
Attachment 126
Revisions 126
Nav Menu Item 126

Defining and Registering Custom Post Types 126
register_post_type($post_type, $args); 127

What Is a Taxonomy and How Should I Use It? 135
Taxonomies Versus Post Meta 135
Creating Custom Taxonomies 137
register_taxonomy($taxonomy, $object_type, $args) 137
register_taxonomy_for_object_type($taxonomy, $object_type) 141

Using Custom Post Types and Taxonomies in Your Themes and Plugins 141
The Theme Archive and Single Template Files 142
Good Old WP_Query and get_posts() 142

Metadata with CPTs 145
add_meta_box($id, $title, $callback, $screen, $context, $priority,

$callback_args) 146

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Wrapper Classes for CPTs 148
Extending WP_Post Versus Wrapping It 150
Why Use Wrapper Classes? 151
Keep Your CPTs and Taxonomies Together 151
Keep It in the Wrapper Class 152
Wrapper Classes Read Better 154

6. Users, Roles, and Capabilities. 155
Getting User Data 156
Add, Update, and Delete Users 158
Hooks and Filters 161
What Are Roles and Capabilities? 162

Checking a User’s Role and Capabilities 163
Creating Custom Roles and Capabilities 164

Extending the WP_User Class 166
Adding Registration and Profile Fields 168
Customizing the Users Table in the Dashboard 172
Plugins 174

Theme My Login 174
Hide Admin Bar from Non-Admins 174
Paid Memberships Pro 174
PMPro Register Helper 174
Members 175

7. Other WordPress APIs, Objects, and Helper Functions. 177
Shortcode API 177

Shortcode Attributes 178
Nested Shortcodes 179
Removing Shortcodes 180
Other Useful Shortcode-Related Functions 180

Widgets API 181
Before You Add Your Own Widget 182
Adding Widgets 182
Defining a Widget Area 186
Embedding a Widget Outside of a Dynamic Sidebar 188

Dashboard Widgets API 188
Removing Dashboard Widgets 189
Adding Your Own Dashboard Widget 191

Settings API 193
Do You Really Need a Settings Page? 194
Could You Use a Hook or Filter Instead? 194
Use Standards When Adding Settings 196

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Ignore Standards When Adding Settings 196
Rewrite API 197

Adding Rewrite Rules 198
Flushing Rewrite Rules 199
Other Rewrite Functions 200

WP-Cron 202
Adding Custom Intervals 203
Scheduling Single Events 204
Kicking Off Cron Jobs from the Server 204
Using Server Crons Only 206

WP Mail 206
Sending Nicer Emails with WordPress 207

File Header API 209
Adding File Headers to Your Own Files 211
Adding New Headers to Plugins and Themes 212

8. Secure WordPress. 215
Why It’s Important 215
Security Basics 216

Update Frequently 216
Don’t Use the Username “admin” 216
Use a Strong Password 217
Examples of Bad Passwords 217
Examples of Good Passwords 218

Hardening Your WordPress Install 218
Don’t Allow Admins to Edit Plugins or Themes 218
Change Default Database Tables Prefix 218
Move wp-config.php 219
Hide Login Error Messages 220
Hide Your WordPress Version 220
Don’t Allow Logins via wp-login.php 221
Add Custom .htaccess Rules for Locking Down wp-admin 221

Backup Everything! 222
Scan Scan Scan! 223
Useful Security Plugins 223

Spam-Blocking Plugins 223
Backup Plugins 224
Scanner Plugins 224
Login and Password-Protection Plugins 225

Writing Secure Code 225
Check User Capabilities 225
Custom SQL Statements 226

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Data Validation, Sanitization, and Escaping 227
Nonces 231

9. JavaScript, jQuery, and AJAX. 237
What Is AJAX? 237
What Is JSON? 237
jQuery and WordPress 238

Enqueuing Other JavaScript Libraries 238
Where to Put Your Custom JavaScript 239

AJAX Calls with WordPress and jQuery 240
Managing Multiple AJAX Requests 244
Heartbeat API 246

Initialization 246
Client-side JavaScript 247
Server-side PHP 248
Initialization 248
Client-side JavaScript 249
Server-side PHP 250

WordPress Limitations with Asynchronous Processing 251
Backbone.js 251

10. XML-RPC. 255
wp.getUsersBlogs 255
wp.getPosts 256
wp.getPost 257
wp.newPost 259
wp.editPost 259
wp.deletePost 260
wp.getTerms 261
wp.getTerm 261
wp.newTerm 262
wp.editTerm 263
wp.deleteTerm 263
wp.getTaxonomies 263
wp.getTaxonomy 264
wp.getUsers 264
wp.getUser 265
wp.getProfile 265
wp.editProfile 266
wp.getCommentCount 266
wp.getPageTemplates 267
wp.getOptions 267

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

wp.setOptions 267
wp.getComment 268
wp.getComments 269
wp.deleteComment 269
wp.editComment 270
wp.newComment 270
wp.getMediaLibrary 271
wp.getMediaItem 271
wp.uploadFile 272
wp.getPostFormats 273
wp.getPostType 273
wp.getPostTypes 273

11. Mobile Apps with WordPress. 275
App Wrapper 275
iOS Applications 275

Enrolling as an Apple Developer 276
Building Your App with Xcode 277
App Distribution 280
iOS Resources 280

Android Applications 281
AndroidManifest.xml 282
activity_main.xml 283
Creating an APK file 284
Getting Your App on Google Play 285
Android Resources 285

Extend Your App 285
AppPresser 286
Mobile App Use Cases 286

12. PHP Libraries, External APIs, and Web Services. 287
Imagick 288
MaxMind GeoIP 288
Google Maps JavaScript API v3 290

Directions 290
Distance Matrix 291
Elevation 291
Geocoding 291
Street View Service 291
Practical App 291

Google Translate 294
Google+ 294

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

People 295
Activities 295
Comments 295
Moments 295

Amazon Product Advertising API 295
Request Parameters 296
Operations 296
Response Groups 297

Twitter REST API v1.1 299
Set Up Your App on Twitter.com 300
Leverage a PHP Library 301

Facebook 302
Pictures 302
Search 302
Permissions 303
Building an Application 304
Leverage What’s Out There 304

Twilio 304
Microsoft Sharepoint 305
We Missed a Few 307

13. Building WordPress Multisite Networks. 309
Why Multisite? 309
Setting Up a Multisite Network 310
Managing a Multisite Network 311

Dashboard 312
Sites 312
Users 312
Themes 313
Plugins 313
Settings 314
Updates 315

Multisite Database Structure 315
Network-Wide Tables 315
Individual Site Tables 317
Shared Site Tables 318

Multisite Plugins 318
WordPress MU Domain Mapping 318
Blog Copier 319
More Privacy Options 319
Multisite Global Search 319
Multisite Robots.txt Manager 319

Table of Contents | xi

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Multisite Functionality 319
$blog_id 319
is_multisite() 320
get_current_blog_id() 320
switch_to_blog($new_blog) 320
restore_current_blog() 321
get_blog_details($fields = null, $get_all = true) 321
update_blog_details($blog_id, $details = array()) 323
get_blog_status($id, $pref) 323
update_blog_status($blog_id, $pref, $value) 323
get_blog_option($id, $option, $default = false) 324
update_blog_option($id, $option, $value) 324
delete_blog_option($id, $option) 325
get_blog_post($blog_id, $post_id) 325
add_user_to_blog($blog_id, $user_id, $role) 325
create_empty_blog($domain, $path, $weblog_title, $site_id = 1) 326
Functions We Didn’t Mention 326

14. Localizing WordPress Apps. 327
Do You Even Need to Localize Your App? 327
How Localization Is Done in WordPress 328
Defining Your Locale in WordPress 328
Prepping Your Strings with Translation Functions 329

__($text, $domain = “default”) 329
_e($text, $domain = “default”) 329
_x($text, $context, $domain = “default”) 330
_ex($title, $context, $domain = “default”) 331
Escaping and Translating at the Same Time 331

Creating and Loading Translation Files 331
Our File Structure for Localization 332
Generating a .pot File 333
Creating a .po File 334
Creating a .mo File 335
Loading the Textdomain 335

Localizing Nonstring Assets 337

15. Ecommerce. 339
Choosing a Plugin 339

Shopping Cart Plugins 339
Membership Plugins 341
Digital Downloads 341

Payment Gateways 342

xii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Merchant Accounts 343
SSL Certificates and HTTPS 344

Installing an SSL Certificate on Your Server 344
SSL with Paid Memberships Pro 346
SSL with Jigoshop 347
WordPress Login and WordPress Admin over SSL 347
WordPress Frontend over SSL 348
SSL on Select Pages 349
Avoiding SSL Errors with the “Nuclear Option” 353

Setting Up Software as a Service (SaaS) with Paid Memberships Pro 355
The Software as a Service Model 355

Step 0: Figure Out How You Want to Charge for Your App 355
Step 1: Installing and Activating Paid Memberships Pro 356
Step 2: Setting Up the Level 357
Step 3: Setting Up Pages 359
Step 4: Payment Settings 360
Step 5: Email Settings 361
Step 6: Advanced Settings 362
Step 7: Locking Down Pages 363
Step 8: Customizing Paid Memberships Pro 365

16. WordPress Optimization and Scaling. 375
Terms 375
Origin Versus Edge 376
Testing 377

What to Test 377
Chrome Debug Bar 379
Apache Bench 382
Siege 388
Blitz.io 389

W3 Total Cache 389
Page Cache Settings 391
Minify 393
Database Caching 393
Object Cache 393
CDNs 394
GZIP Compression 394

Hosting 394
WordPress-Specific Hosts 395
Rolling Your Own Server 395

Selective Caching 408
The Transient API 408

Table of Contents | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Multisite Transients 411
Using JavaScript to Increase Performance 412
Custom Tables 413
Bypassing WordPress 415

Index. 417

xiv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

As we write this, WordPress powers 20% of the Internet, and that number is growing.
Many developers want to do more with their WordPress sites but feel that they need to
jump ship to a more traditional application framework like Ruby on Rails, Yii, Zend, or
Codeigniter to build “real” web apps. This sentiment is wrong, and we’re here to fix it.

Despite starting out as a blogging platform and currently existing primarily as a content
management system, WordPress has grown into a flexible and capable platform for
building web apps. This book will show you how to use WordPress as an application
framework to build any web app, large or small.

Who This Book Is For
This book will be most useful for WordPress developers looking to work on heavier
applications and PHP developers with some WordPress experience looking for a PHP-
based application framework.

Commercial plugin and theme developers, or anyone working on large distributed
WordPress projects, will also find the concepts and techniques of this book useful.

If you are a PHP or language-agnostic developer using another framework and jealous
of the large library of WordPress plugins and themes, you may be surprised to learn
how well WordPress can work as a general application framework. Reading and applying
the lessons in this book could change your work life for the better.

We assume that readers have an intermediate understanding of general PHP program‐
ming. You should also have a basic understanding of HTML and CSS, and familiarity
with MySQL and SQL queries. Basic understanding of JavaScript and jQuery program‐
ming will help with the JavaScript and AJAX chapter and related examples.

xv

www.it-ebooks.info

http://www.it-ebooks.info/

Who This Book Is Not For
This book is not for people who want to learn how to use WordPress as an end user.
There will be brief introductions to standard WordPress functionality, but we assume
that readers have already experienced WordPress from a user’s perspective.

This book is not meant for nonprogrammers. While it is possible to build very functional
web applications by simply combining and configuring the many plugins available for
WordPress, this book is written for developers building their own plugins and themes
to power new web apps.

This book will not teach you how to program but will teach you how to program “the
WordPress way.”

What You’ll Learn
Our hope with this book is that you will learn the programming and organizational
techniques and best practices for developing complex applications using WordPress.

Chapter 1 defines what we mean by “web app” and also covers why or why not to use
WordPress for building web apps and how to compare WordPress to other application
frameworks. We also introduce SchoolPress, the WordPress app that we use as an ex‐
ample throughout the book.

Chapter 2 covers the basics of WordPress. We go over the various directories of the core
WordPress install and what goes where. We also explain each database table created by
WordPress, what data each holds, and which WordPress functions map to those tables.
Even experienced WordPress developers can learn something from this chapter and are
encouraged to read it.

Chapter 3 is all about plugins. What are they? How do you make your own plugins?
How should you structure your app’s main plugin? When should you leverage third-
party plugins or roll your own?

Chapter 4 is all about themes. How do themes works? How do themes map to views in
a typical model-view-controller (MVC) framework? What code should go into your
theme, and what code should go into plugins? We also cover using theme frameworks
and UI frameworks and the basics of responsive design.

Chapter 5 covers custom post types and taxonomies. We go over the default post types
built into WordPress, why you might need to build your own, and then how to go about
doing that. We also cover post meta and taxonomies, what each is appropriate for, and
how to build custom taxonomies and map them to your post types. Finally, we show
how to build wrapper classes for your post types to organize your code utilizing object-
oriented programming (OOP).

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 covers users, roles, and capabilities. We show how to add, update, and delete
users programmatically, and how to work with user meta, roles, and capabilities. We
also show how to extend the WP_User class for your user archetypes like “customers”
and “teachers” to better organize your code using OOP techniques.

Chapter 7 covers a few of the more useful WordPress APIs and helper functions that
didn’t fit into the rest of the book but are still important for developers building web
apps with WordPress.

Chapter 8 is all about securing your WordPress apps, plugins, and themes.

Chapter 9 covers using JavaScript and AJAX in your WordPress application. We go over
the correct way to enqueue JavaScript into WordPress and how to build asynchronous
behaviors in your app.

Chapter 10 covers the XML-RPC API for WordPress and how to use it to integrate
WordPress with outside apps.

Chapter 11 covers how to use WordPress to power native apps on mobile devices by
creating app wrappers for iOS and Android.

Chapter 12 covers some third-party PHP libraries, services, and APIs that are often used
in web apps and how to integrate them with WordPress.

Chapter 13 covers WordPress multisite networks, including how to set them up and
things to keep in mind when developing for multisite.

Chapter 14 covers localizing your WordPress plugins and themes, including how to
prep your code for translation and how to create and use translation files.

Chapter 15 covers ecommerce. We go over the various types of ecommerce plugins
available and how to choose between them. We then go into detail on how to use Word‐
Press to handle payments and account management for software as a service (SaaS) web
apps.

Chapter 16 covers how to optimize and scale WordPress for high-volume web apps. We
go over how to test the performance of your WordPress app and the most popular
techniques for speeding up and scaling sites running WordPress.

About the Code
All examples in this book can be found at https://github.com/bwawwp. Please note that
these code examples were written to most clearly convey the concepts we cover in the
book. To improve readability, we often ignored best practices for security and localiza‐
tion (which we cover in Chapter 8 and Chapter 14 of this book) or ignored certain edge
cases. You will want to keep this in mind before using any examples in production code.

Preface | xvii

www.it-ebooks.info

https://github.com/bwawwp
http://www.it-ebooks.info/

The sample app SchoolPress can be found at http://schoolpress.me, with any open
sourced code for that site available at https://github.com/bwawwp/schoolpress.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, datatypes, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

xviii | Preface

www.it-ebooks.info

http://schoolpress.me
https://github.com/bwawwp/schoolpress
http://www.it-ebooks.info/

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Web Apps with WordPress by Brian
Messenlehner and Jason Coleman (O’Reilly). Copyright 2014 Brian Messenlehner and
Jason Coleman, 978-1-449-36407-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional information.
You can access this page at http://oreil.ly/building-apps-wp.

To comment or ask technical questions about this book, send email to con
tact@bwawwp.com.

Preface | xix

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/building-apps-wp
mailto:contact@bwawwp.com
mailto:contact@bwawwp.com
http://www.it-ebooks.info/

For more information about our book and online examples see our website at http://
bwawwp.com.

Find us on Facebook: http://facebook.com/bwawwp

Follow us on Twitter: http://twitter.com/bwawwp

Follow us on Instagram: http://instagram.com/bwawwp

Acknowledgments
Thanks to Jason Coleman and Matt Mullenweg; I could not have written this book
without them. I would like to thank Meghan Blanchette and Allyson MacDonald for
staying on top of things at O’Reilly Media, and thanks to our technical reviewers. I am
thankful of my wife and best friend, Robin Messenlehner, and my children Dalya, Brian
Jr., and Nina Messenlehner, for supporting me and my efforts to write this book. I would
also like to acknowledge my business partners and friends Brad Williams, Lisa Sabin-
Wilson, and the entire WebDevStudios.com team for building the best WordPress de‐
velopment and design shop on earth! And last but not least, I love you, Mom!

— Brian Messenlehner

Thanks to my coauthor Brian for asking me to write this book with him. Thanks to our
editors Meghan and Allyson for keeping us on track and helping us to stay true to our
original vision. Thanks to our great technical editors Peter MacIntyre and Pippin Wil‐
liamson for reviewing our code and writing and providing valuable feedback. Thanks
to Frederick Townes for his feedback and contributions to our chapter on optimization
and scaling. Thanks to everyone in the WordPress community who answered all of my
random tweets and may or may not have known they were helping me to write this
book. Thanks to my wife, Kim, for supporting me as always during yet another adven‐
ture in our life. Thanks to my daughter, Marin, for missing me when I was away to write,
and my son, Isaac, for constantly asking me if I had “finished the book yet.” Last but not
least, thanks to my family who have always supported my writing: Mom, Dad, Jeremy,
and Nana Men are all excited to be the first nonprogrammers to read Building Web Apps
with WordPress.

— Jason Coleman

xx | Preface

www.it-ebooks.info

http://bwawwp.com
http://bwawwp.com
http://facebook.com/bwawwp
http://twitter.com/bwawwp
http://instagram.com/bwawwp
http://www.it-ebooks.info/

Foreword

The web is evolving and WordPress is no different. What started out as a blogging
platform has grown into a powerful content management system that powers more
websites on the internet today than any other platform. WordPress is endlessly flexible,
allowing you to build any type of application you can dream of. Whether it’s a native
mobile app for locating a local business or an e-commerce desktop app with member‐
ship capabilities, WordPress has the ability not only to power these apps, but to drasti‐
cally reduce the development time to do so.

Brian and Jason are leading the charge in changing how we think about app develop‐
ment. Their knowledge and experience will help guide you through the process of
building powerful web applications using the internet’s most popular development
framework, WordPress.

The future of the internet is web apps and WordPress is making it easier than ever to
create that future. Code on!

— Brad Williams, Co-Founder of WebDevStudios

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Building Web Apps with WordPress

Let’s start by defining what a web app is and how it differs from a website or a web
service.

In reality, this book will help you build anything with WordPress: websites, themes,
plugins, web services, and web apps. We chose to focus on web apps because they can
be seen as super websites that make use of all of the techniques we’ll cover.

There are many people who believe that WordPress isn’t powerful enough or meant for
building web apps, and we’ll get into that more later. We’ve been building web apps with
WordPress for many years and know that it absolutely is possible to build scalable ap‐
plications using WordPress.

In this chapter, we’ll cover why WordPress is a great framework for building web apps.
We’ll also cover some situations where using WordPress wouldn’t be the best way to
build your web app.

What Is a Website?
You know what a website is. A website is a set of one or more web pages, containing
information, accessed via a web browser.

What Is an App?
We like the Wikipedia definition: “Application software, also known as an application
or an app, is computer software designed to help the user to perform specific tasks.”

What Is a Web App?
A web app is just an app run through a web browser.

1

www.it-ebooks.info

http://www.it-ebooks.info/

1. Many of the ideas in this section are influenced by these blog posts: “What is a Web Application?” by Dom‐
inique Hazaël-Massieux and “What is a Web Application?” by Bob Baxley.

Please note that with some web apps, the browser technology is hidden, for example,
when integrating your web app into a native Android or iOS app, running a website as
an application in Google Chrome, or running an app using Adobe AIR. However, on
the inside of these applications is still a system parsing HTML, CSS, and JavaScript.

You can also think of a web app as a website, plus more application-like stuff.

There is no exact line where a website becomes a web app. It’s one of those things where
you know it when you see it.

What we can do is explain some of the features of a web app, give you some examples,
and then try to come up with a shorthand definition so you know generally what we
are talking about as we use the term throughout the book.

You will see references to SchoolPress while reading this book.
SchoolPress is a web application we are building to help schools and
educators manage their students and curricula. All of the code ex‐
amples are geared toward functionality that may exist in School‐
Press. We will talk more about the overall concept of SchoolPress later
in this chapter.

Features of a Web App
The following are some features generally associated with web apps and applications in
general. The more of these features present in a website, the more appropriate it is to
upgrade its label to a web app.1

Interactive elements
A typical website experience involves navigating through page loads, scrolling, and
clicking hyperlinks. Web apps can have links and scrolling as well, but will tend to
use other methods of navigating through the app.

Websites with forms offer transactional experiences. An example would be a contact
form on a website or an application form on the careers page of a company website.
Forms allow users to interact with a site using something more than a click.

Web apps will have even more interactive UI elements. Examples include toolbars,
drag and drop elements, rich text editors, and sliders.

Tasks rather than content
Remember, web apps are “designed to help the user to perform specific tasks.”
Google Maps users get driving directions. Gmail users write emails. Trello users
manage lists. SchoolPress users comment on class discussions.

2 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://bit.ly/wiawa
http://bit.ly/wiawa
http://bit.ly/wiawa2
http://www.it-ebooks.info/

Some apps are still content focused. A typical session with a Facebook or Twitter
app involves about 90% reading. However, the apps themselves present a way of
browsing content different from the typical web browsing experience.

Logins
Logins and accounts allow a web app to save information about its users. This
information is used to facilitate the main tasks of the app and enable a persistent
experience. When logged in, SchoolPress users can see which discussions are un‐
read. They also have a username that identifies their activity within the app.

Web apps can also have tiers of users. SchoolPress will have admins controlling the
inner workings of the app, teachers setting up classes, and students participating in
class discussions.

Device capabilities
Web apps running on your phone can access your camera, your address book,
internal storage, and GPS location information. Web apps running on the desktop
may access a webcam or a local hard drive. The same web app may respond differ‐
ently depending on the device accessing it. Web apps will adjust to different screen
sizes, resolutions, and capabilities.

Work offline
Whenever possible, it’s a good idea to make your web apps work offline. Sure, the
interactivity of the Internet is what defines that “web” part of web app, but a site
that doesn’t stop working when someone drives through a tunnel will feel more like
an app.

Emails can be drafted offline in Gmail. Evernote will allow you to create and edit
notes offline and sync them to the Internet when connectivity comes back.

Mashups
Web apps can tie one or more web apps together. A web app can utilize various web
services and APIs to push and pull data. You could have a web app that pulls
location-based information like longitude and latitude from Twitter and Four‐
square and posts it to a Google Map.

Why Use WordPress?
No single programming language or software tool will be right for every job. We’ll cover
why you may not want to use WordPress in a bit, but for now, let’s go over some situations
where using WordPress to build your web app would be a good choice.

Why Use WordPress? | 3

www.it-ebooks.info

http://www.it-ebooks.info/

You Are Already Using WordPress
If you are already using WordPress for your main site, you might just be a quick plugin
away from adding the functionality you need. WordPress has great plugins for ecom‐
merce (Jigoshop), forums (bbPress), membership sites (Paid Memberships Pro), social
networking functionality (BuddyPress), and gamification (BadgeOS).

Building your app into your existing WordPress site will save you time and make things
easier on your users. So if your application is fairly straightforward, you can create a
custom plugin on your WordPress site to program the functionality of your web app.

If you are happy with WordPress for your existing site, don’t be confused if people say
that you need to upgrade to something else to add certain functionality to your site. It’s
probably not true. You don’t have to throw out all of the work you’ve done on WordPress
already, and all of the following are great reasons to stick with WordPress.

Content Management Is Easy with WordPress
WordPress was developed first as a blogging platform, but through the years and with
the introduction of custom post types (CPTs) in version 3.0, it has evolved into a fully
functional content management system (CMS). Any page or post can be edited by ad‐
ministrators via the dashboard, which can be accessed through your web browser. You
will learn about working with CPTs in Chapter 5.

WordPress makes adding and editing content easy via a WYSIWYG editor, so you don’t
have to use web designers every time you want to make a simple change to your site.
You can also create custom menus and navigation elements for your site without touch‐
ing any code.

If your web app focuses around bits of content (e.g., our SchoolPress app is focused on
assignments and discussions), the Custom Post Types API for WordPress (covered in
Chapter 5) makes it easy to quickly set up and manage this custom content.

Even apps that are more task oriented will typically have a few pages for information,
documentation, and sales. Using WordPress for your app will give you one place to
manage your app and all of your content.

User Management Is Easy and Secure with WordPress
WordPress has everything you need for adding both admin users and end users to your
site.

In addition to controlling access to content, the Roles and Capabilities system in Word‐
Press is extensible and allows you to control what actions are available for certain groups
of users. For example, by default, users with the contributor role can add new posts, but

4 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

can’t publish them. Similarly, you can create new roles and capabilities to manage who
has access to your custom functionality.

Plugins like Paid Memberships Pro can be used to extend the built-in user management
to allow you to designate members of different levels and control what content users
have access to. For example, you can create a level to give paying members access to
premium content on your WordPress site.

Plugins
There are over 27,000 free plugins in the WordPress repository. There are many more
plugins, both free and premium, on various sites around the Internet. When you have
an idea for an extension to your website, there is a good chance that there’s a plugin for
that, which will save you time and money.

There are a handful of indispensable plugins that we end up using on almost every site
and web application we build.

For most websites you create, you’ll want to cache output for faster browsing, use tools
like Google Analytics for visitor tracking, create sitemaps, and tweak page settings for
search engine optimization (SEO), along with a number of other common tasks.

There are many well-supported plugins for all of these functions. We suggest our fa‐
vorites throughout this book; you can find a list of them on this book’s website.

Flexibility Is Important
WordPress is a full-blown framework capable of many things. Additionally, WordPress
is built on PHP, JavaScript, and MySQL technology, so anything you can build in PHP/
MySQL (which is pretty much anything) can be bolted into your WordPress application
easily enough.

WordPress and PHP/MySQL in general aren’t perfect for every task, but they are well
suited for a wide range of tasks. Having one platform that will grow with your business
can allow you to execute and pivot faster.

For example, here is a typical progression for the website of a lean startup running on
WordPress:

1. Announce your startup with a one-page website.
2. Add a form to gather email addresses.
3. Add a blog.
4. Focus on SEO and optimize all content.
5. Push blog posts to Twitter and Facebook.
6. Add forums.

Why Use WordPress? | 5

www.it-ebooks.info

http://wordpress.org/plugins/
http://bwawwp.com/plugins/
http://www.it-ebooks.info/

7. Use the Paid Memberships Pro plugin to allow members to pay for access.
8. Add custom forms, tools, and application behaviors for paying members.
9. Update the UI using AJAX.

10. Tweak the site and server to scale.
11. Localize the site/app for different countries and languages.
12. Launch iOS and Android wrappers for the app.

The neat thing about moving through the path is that at every step along the way, you
have the same database of users and are using the same development platform.

Frequent Security Updates
The fact that WordPress is used on millions of sites makes it a target for hackers trying
to break through its security. Some of those hackers have been successful in the past;
however, the developers behind WordPress are quick to address vulnerabilities and
release updates to fix them. It’s like having millions of people constantly testing and
fixing your software, because that’s exactly what is happening.

The underlying architecture of WordPress makes applying these updates a quick and
painless process that even novice web users can perform. If you are smart about how
you set up WordPress and upgrade to the latest versions when they become available,
WordPress is a far more secure platform for your site than anything else available. Se‐
curity is discussed in more detail in Chapter 8.

Cost
WordPress is free. PHP is free. MySQL is free. Most plugins are free. Hosting costs
money. But depending on how big your web application is and how much traffic you
get, it can be relatively inexpensive. If you require custom functionality not found in
any existing plugins, you may need to pay a developer to build it. Or if you are a developer
yourself, it will cost you some time.

Let’s compare building a simple web application on top of WordPress to building a
simple .NET web application from scratch:

.NET App
1. IIS — Pay for License
2. SQL Server — Pay for License
3. .NET developers typically cost more than PHP developers.
4. Pay to construct a solid database schema.

6 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

5. Pay to create helper functions for moving data in and out of your database.
6. Pay to create a login process for your users.
7. Pay to develop any custom functionality you require.
8. Security! You have no idea how your app will hold up against the Internet, but you’re

going to pay to try to make your app as secure as possible.

WordPress App
1. Apache — $0
2. MySQL — $0
3. PHP developers typically cost less than .NET developers and are way cooler! This

is a fact.
4. WordPress has a proven database schema and is ready to go.
5. WordPress has a ton of helper functions for interacting with the database, and in

most cases you can utilize CPTs and taxonomies to store and categorize your data
without much code.

6. WordPress already has a solid login process.
7. You can gain most functionality you require from free third-party plugins. If any

custom development is required, it would only be for niche functionality that
doesn’t already exist.

8. Security! WordPress is running on about 20% of all websites on the Internet. You
can bet that it is one of the securest platforms (don’t make your admin password
“password”).

In short, you can build any size application on top of WordPress and nine times out of
10, it will cost less money and take less time to develop than on any other platform.

Responses to Some Common Criticisms of WordPress
There are some highly vocal critics of WordPress who will say that WordPress isn’t a
good framework for building web apps, or that WordPress isn’t a framework at all. With
all due respect to those with these opinions, we’d like to go over why we disagree. Here
are some common criticisms:

WordPress is just for blogs. Many people believe that since WordPress was first built to
run a blog, it is only good at running blogs.

Why Use WordPress? | 7

www.it-ebooks.info

http://www.it-ebooks.info/

2. W3Tech has regular surveys on the use of different content management systems.

Statements like this were true a few years ago, but WordPress has since implemented
strong CMS functionality, making it useful for other content-focused sites. WordPress
is now the most popular CMS in use, with over 50% market share.2

Figure 1-1 shows a slide from Matt Mullenweg’s “State of WordPress” presentation from
WordCamp San Francisco 2013. The upside-down pyramid on the left represents a circa
2006 WordPress, with most of the code devoted to the blog application and a little bit
of CMS and platform code holding it up. The pyramid on the right represents the current
state of the WordPress platform, where most of the code is in the platform itself, with a
CMS layer on top of that, and the blog application running on top of the CMS layer.
WordPress is a much more stable platform than it was just a few years ago.

Figure 1-1. Diagrams from Matt Mullenweg’s “State of WordPress” presentation in
2013. WordPress wasn’t always so stable.

The Custom Post Types API can be used to tweak your WordPress install to support
other content types besides blog posts or pages. This is covered in detail in Chapter 5.

WordPress is just for content sites. Similar to the “just for blogs” folks, some will say that
WordPress is just for content sites.

WordPress is the clear choice for any content-related website. However, as we’ll go over
in detail in this very book, WordPress is a great framework for building more interactive
web applications as well.

The main feature allowing WordPress to be used as a framework is the plugins API,
which allows you to hook into how WordPress works by default and change things. Not
only can you use the thousands of plugins available in the WordPress repository and
elsewhere on the Internet, you can use the plugins API to write your own custom plugins
to make WordPress do anything possible in PHP/MySQL.

WordPress doesn’t scale. Some will point to a default WordPress install running on low-
end hosting, note how the site slows down or crashes under heavy load, and conclude
that WordPress doesn’t scale.

8 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://bit.ly/w3techs
http://www.it-ebooks.info/

3. Quantcast top sites and Alexa top sites

This statement is provably false. WordPress.com runs on the same basic software as any
WordPress site and at the time of this writing is somewhere between the 13th most- and
22nd-most-visited website in the world.3

The issues with scaling WordPress are the same issues you have scaling any application:
caching pages and data and handling database calls more rapidly. We can learn by how
large sites like WordPress.com, TechCrunch, and the New York Times blogs have scaled
on WordPress. Similarly, most of the lessons learned scaling PHP/MySQL applications
in general apply to WordPress as well. Scaling WordPress apps is covered in detail in
Chapter 16.

WordPress is insecure. Like any open source product, there will be a trade-off with regard
to security when using WordPress.

On the one hand, because WordPress is so popular, it will be the target of hackers looking
for security exploits. And because the code is open source, these exploits will be easier
to discover.

On the other hand, because WordPress is open source, you will hear about it when these
exploits become public, and someone else will probably fix the exploit for you.

We feel more secure knowing that there are lots of people out there trying to exploit
WordPress and just as many people working to make WordPress secure against those
exploits. We don’t believe in “security through obscurity” except as an additional meas‐
ure. We’d rather have the security holes in our software come out in the open rather
than go undetected until the worst possible moment.

Chapter 8 will cover security issues in more detail, including a list of best practices to
harden your WordPress install and how to code in a secure manner.

WordPress plugins are crap. The plugin API in WordPress and the thousands of plugins
that have been developed using it are the secret sauce and in our opinion the number
one reason that WordPress has become so popular and is so successful as a website
platform.

Some people will say, “Sure, there are thousands of plugins, but they are all crap.”

OK, some of the plugins out there are crap. But there are a lot of plugins that are most
definitely not crap.

Paid Memberships Pro, developed by our coauthor Jason Coleman, is not crap. Using
Paid Memberships Pro to handle your member billing and management will allow you
to focus your development efforts on your app’s core competency instead of how to
integrate your site with a payment gateway.

Why Use WordPress? | 9

www.it-ebooks.info

http://www.quantcast.com/top-sites
http://www.alexa.com/topsites
http://www.it-ebooks.info/

A lot of plugins do something very simple (e.g., hiding the admin bar from nonadmins),
work exactly as advertised, and don’t really have room for being crap.

Even the crappy plugins can be fixed, rewritten, or borrowed from to work better. You
may find it easier sometimes to rewrite a bad plugin instead of fixing it. However, you’re
still further ahead than you would be if you had to write everything yourself from
scratch.

No one is forcing you to use WordPress plugins without vetting them yourself. If you
are building a serious web app, you’re going to check out the plugin code yourself, fix
it up to meet your standards, and move on with development.

When Not to Use WordPress
WordPress isn’t the solution for every application. Here are a few cases where you
wouldn’t want to use WordPress to build your application.

You Plan to License or Sell Your Site’s Technology
WordPress uses the GNU General Public License, version 2 (GPLv2), which has re‐
strictions on how you distribute any software that you build with it. Namely, you cannot
restrict what people do with your software once you sell or distribute it to them.

This is a complicated topic, but the basic idea is if you are only selling or giving away
access to your application, you won’t have to worry about the GPLv2. However, if you
are selling or distributing the underlying source code of your application, the GPLv2
will apply to the code you distribute.

For example, if we host SchoolPress on our own servers and sell accounts to access the
app, that doesn’t count as distribution, and the GPLv2 doesn’t impact our business at
all.

However, if we wanted to allow schools to install the software to run on their own servers,
we would have to share the source code with them. This would count as an act of dis‐
tribution. Our customers would be able to legally give our source code away for free
even if we had initially charged them for the software. We’d have to use the GPLv2
license, which wouldn’t allow us to restrict what they do with the code after they down‐
loaded it.

There Is Another Platform That Will Get You “There” Faster
If you have a team of experienced Ruby developers, you should use Ruby to build your
web app. If there is a platform, framework, or bundle that includes 80% of the features
you need for your web app and WordPress doesn’t have anything similar, you should
probably use that other platform.

10 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Flexibility Is NOT Important to You
One of the greatest features of a WordPress site is the ability to change parts of your
website to better fit your needs quickly. For example, if Facebook “likes” stop driving
traffic, you can uninstall your Facebook connect plugin and install a Google+ one.

Generally, updating your theme or swapping plugins on a WordPress site will be faster
than developing features from scratch on another platform.

However, in cases where optimization and performance are more important than being
able to quickly update the application, programming a native app or programming in
straight PHP, is going to be the better choice.

For example, if your app is going to do one simple thing (say just display the current
time), you will want to build your app at a lower level. Similarly, if you have Facebook’s
resources, you can afford to build everything by hand and use custom PHP-to-C com‐
pilers to shave a few milliseconds off your website load times.

Your App Needs to Be Highly Real Time
One of the potential downsides of WordPress, which we will get into later, is its reliance
on the typical web server architecture. In the typical WordPress setup, a user visits a
URL, which hits a web server (like Apache) over HTTP, kicks off a PHP script to generate
the page, and then returns the full page to the user.

There are ways to improve the performance of this architecture using caching techni‐
ques and/or optimized server setups. You can make WordPress asynchronous by using
using AJAX calls or accessing the database with alternative clients. However, if your
application needs to be real-time and fully asynchronous (e.g., a chatroom-like app or
a multiplayer game), you have our blessing to think twice about using WordPress.

Many WordPress developers, including Matt Mullenweg, the founder and spiritual
leader of WordPress, understand this limitation. It is very likely that the WordPress core
will be updated over time to work better for real-time asynchronous apps (the Heartbeat
API released in version 3.6 of WordPress is a good step in this direction), but currently
you’re going to face an uphill battle trying to get WordPress to work asynchronously
with the same performance as a native app or something built using Node.js or other
technologies specifically suited to real-time applications.

WordPress as an Application Framework
Content management systems like WordPress, Drupal, and Joomla often get left out of
the framework discussion, but in reality, WordPress (in particular) is really great for
what frameworks are supposed to be about: quickly building applications.

WordPress as an Application Framework | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Within minutes, you can set up WordPress and have a fully functional app with user
signups, session management, content management, and a dashboard to monitor site
activity.

The various APIs, common objects, and helper functions covered throughout this book
allow you to code complex applications faster without having to worry about lower-
level systems integration.

Figure 1-2 shows that right triangle from Mullengweg’s 2013 “State of WordPress” pre‐
sentation depicting a stable WordPress platform with a CMS layer built on top and a
blogging application built on top of the CMS layer.

The reality is that the majority of the current WordPress codebase supports the under‐
lying application platform. You can think of each WordPress release as a application
framework with a sample blogging app bundled in.

Figure 1-2. The WordPress platform.

WordPress Versus MVC Frameworks
MVC stands for model-view-controller and is a common design pattern used in many
software development frameworks. The main benefits of using an MVC architecture
are code reusability and separation of concerns. WordPress doesn’t use an MVC archi‐
tecture, but does in its own way encourage code reuse and separation of concerns.

I’ll explain the MVC architecture very briefly and how it maps to a WordPress devel‐
opment process. This section should help readers who are familiar with MVC-based
frameworks understand how to approach WordPress development in a similar way.

Figure 1-3 describes a typical MVC-based application. The end user uses a controller,
which manipulates the application state and data via a model, which then updates a view
that is shown to the user. For example, in a blog application, a user might be looking at
the recent posts page (a view). The user would click a post title, which would take the
user to a new URL (a controller) that would load the post data (in a model) and display
the single post (a different view).

12 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-3. How MVC works

The MVC architecture supports code reusability by allowing the models, views, and
controllers to interact. For example, both the recent posts view and the single posts view
might use the same post model when displaying post data. The same models might be
used in the frontend to display posts and in the backend to edit them.

The MVC architecture supports separation of concerns by allowing designers to focus
their attention on the views, while programmers focus their attention on the models.

You could try to use an MVC architecture within WordPress. There are a number of
projects to help you do just that; however, we think trying to strap MVC onto WordPress
could lead to issues unless the WordPress core were to officially support MVC. Instead,
we suggest following the “WordPress Way,” as outlined in this book.

Still, if you are interested…

MVC plugins for WordPress

• WP MVC
• Churro
• Tina MVC

There are a couple of ways to map an MVC process to WordPress.

Models = plugins
In an MVC framework, the code that stores the underlying data structures and business
logic are found in the models. This is where the programmers will spend the majority
of their time.

In WordPress, plugins are the proper place to store new data structures, complex busi‐
ness logic, and custom post type definitions.

This comparison breaks down in a couple of ways. First, many plugins add view-like
functionality and contain design elements. Take any plugin that adds a widget to be used

WordPress as an Application Framework | 13

www.it-ebooks.info

http://bit.ly/wp-mvc
http://bit.ly/churro-plugin
http://bit.ly/tina-mvc
http://www.it-ebooks.info/

4. This technique for overriding plugin templates is covered in Chapter 4.

in your pages. Second, forms and other design components used in the WordPress
dashboard are generally handled in plugins as well.

One way to make the separation of concerns more clear when adding view-like com‐
ponents to your WordPress plugins is to create a “templates” or “pages” folder and put
your frontend code into it. Common practice is to allow templates to override the tem‐
plate used by the plugin. For example, when using WordPress with the Paid Member‐
ships Pro plugin, you can place a folder called “paid-memberships-pro/pages” into your
active theme to override the default page templates.4

Views = themes
In an MVC framework, the code to display data to the user is written in the views. This
is where designers will spend the majority of their time.

In WordPress, themes are the proper place to store templating code and logic.

Again, the comparison here doesn’t map one to one, but “views = themes” is a good
starting point.

Controllers = template loader

In an MVC framework, the code to process user input (in the form of URLs or $_GET
or $_POST data) and decide which models and views to use to handle a request are stored
in the controllers. Controller code is generally handled by a programmer and often set
up once and forgotten about. The meat of the programming in an MVC application
happens in the models and views.

In WordPress, all page requests (unless they are accessing a cached .html file) are pro‐
cessed through the index.php file and processed by WordPress according to the Tem‐
plate Hierarchy. The template loader figures out which file in the template should be
used to display the page to the end user. For example, use search.php to show search
results, single.php to show a single post, etc.

The default behavior can be further customized via the WP_Rewrite API (covered in
Chapter 7) and other hooks and filters.

Codex information on the Template Hierarchy is available online; the Template Hier‐
archy is covered in more depth in Chapter 4.

For a better understanding of how MVC frameworks work, the PHP framework Yii has
a great resource explaining how to best use their MVC architecture.

For a better understanding of how to develop web applications using WordPress as a
framework, continue reading this book.

14 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://bit.ly/temp-hier
http://bit.ly/yii-guide
http://www.it-ebooks.info/

Anatomy of a WordPress App
In this section, we’ll describe the app we built as a companion for this book: School‐
Press. We’ll cover the intended functionality of SchoolPress, how it will work and who
will use it, and—most importantly for this book—how each piece of the app will be built
in WordPress.

Don’t be alarmed if you don’t understand some of the following terminology. In later
chapters, we will go over everything introduced here in more detail. Whenever possible,
we’ll point to the chapter of this book that corresponds to the feature being discussed.

What Is SchoolPress?
SchoolPress is a web app that makes it easy for teachers to interact with their students
outside of the classroom. Teachers can create classes and invite their students to them.
Each class has a forum for ad hoc discussion and also a more structured system for
teachers to post assignments and have students turn in their work.

The working app can be found on the SchoolPress website. The SchoolPress source code
can be found on GitHub.

SchoolPress Runs on a WordPress Multisite Network
SchoolPress runs a multisite version of WordPress. The main site at schoolpress.me
hosts free accounts where teachers can sign up and start managing their classes. It also
has all of the marketing information for separate school sites on the network, including
the page to sign up and checkout for a paid membership level.

Schools can pay an annual fee to create a unique subdomain for their school, like
yourschool.schoolpress.me, that will house classes for their teachers and offers finer con‐
trol and reporting for all classes across the entire school. Details on using a multisite
network with WordPress can be found in Chapter 13.

The SchoolPress Business Model
SchoolPress uses the Paid Memberships Pro, PMPro Register Helper, and PMPro Net‐
work plugins to customize the registration process and accept credit card payments for
schools signing up.

Schools can purchase a unique subdomain for their school for an annual fee. No other
SchoolPress users pay for access.

When school admins sign up, they can specify a school name and slug for their subdo‐
main (myschool.schoolpress.me). A new network site is set up for them and they are
given access to a streamlined version of the WordPress dashboard for their site.

Anatomy of a WordPress App | 15

www.it-ebooks.info

http://schoolpress.me
https://github.com/bwawwp/schoolpress
http://www.it-ebooks.info/

The school admin then invites teachers into the system. Teachers can also request an
invitation to a school that must be approved by the school admin.

Teachers can invite students to the classes they create. Students can also request an
invitation to a class that must be approved by the teacher.

Teachers can also sign up for free to host their classes at schoolpress.me. Pages hosted
on this subdomain may run ads or other monetization schemes. Details on how to setup
ecommerce with WordPress can be found in Chapter 15.

Membership Levels and User Roles
Teachers are given a Teacher membership level (through Paid Memberships Pro) and
a custom role called “Teacher” that gives them access to create and edit their classes,
moderate discussion in their class forums, and create and manage assignments for their
classes.

Teachers do not have access to the WordPress dashboard. They create and manage their
classes and assignments through frontend forms created for this purpose.

Students are given a “Student” membership level and the default “Subscriber” role in
WordPress. Students only have access to view and participate in classes they are invited
to by their teachers. Details on user roles and capabilities can be found in Chapter 6.
Details on using membership levels to control access can be found in Chapter 15.

Classes Are BuddyPress Groups
When teachers create “classes,” they are really creating BuddyPress groups and inviting
their students to the group. Using BuddyPress, we get class forums, private messaging,
and a nice way to organize our users.

The class discussion forums are powered by the bbPress plugin. A new forum is gen‐
erated for each class, and BuddyPress manages access to the forums. Details on lever‐
aging third-party plugins like BuddyPress and bbPress can be found in Chapter 3.

Assignments Are a Custom Post Type
Assignments are a custom post type (CPT), with a frontend submission form for teach‐
ers to post new assignments. Assignments are just like the default blog posts in Word‐
Press, with a title, body content, and attached files. The teacher posting the assignment
is the author of the post.

16 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress has built-in post types like posts and pages and built-in
taxonomies like categories and tags. For SchoolPress, we are creat‐
ing our own CPTs and taxonomies. Details on creating custom post
types and taxonomies can be found in Chapter 5.

Submissions Are a (Sub)CPT for Assignments
Students can post comments on an assignment, and they can also choose to post their
official submission for the assignment through another form on the frontend.

Submissions, like assignments, are also CPTs. Submissions are linked to assignments
by setting the submission’s post_parent field to the ID of the assignment it was sub‐
mitted to. Students can post text content and also add one or more attachments to a
submission.

Semesters Are a Taxonomy on the Class CPT
A custom taxonomy called “Semester” is set up for the group/class CPT. School admins
can add new semesters to their sites. For example, a “fall 2013” semester could be created
and teachers could assign this semester when creating their classes. Students can then
easily view a list of all fall 2013 classes to browse through.

Departments Are a Taxonomy on the Class CPT
A custom taxonomy called “Department” is also set up for the group/class CPT. This is
also available as a dropdown for teachers when creating their classes and allows for a
browsable list of classes by department.

SchoolPress Has One Main Custom Plugin
Behind the scenes, the custom bits of the SchoolPress app are controlled from a single
custom plugin called SchoolPress. This — the main plugin — includes the definitions
for the various custom post types, taxonomies, and user roles. It also contains the code
to tweak the third-party plugins SchoolPress uses like Paid Memberships Pro and Bud‐
dyPress.

The main plugin also contains classes for school admins, teachers, and students that
extend the WP_User class and classes for classes, assignments, and submissions that
wrap the WP_Post class. These (PHP) classes allow us to organize our code in an object-
oriented way that makes it easier to control how our various customizations work to‐
gether and will make it easier to extend our code in the future. These classes are fun to
work with and allow for the code that you see in Example 1-1.

Anatomy of a WordPress App | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1-1. Possible user log-in events
if($class->isTeacher($current_user))
{
 //this is the teacher, show them teacher stuff
 //...
}
elseif($class->isStudent($current_user))
{
 //this is a student in the class, show them student stuff
 //...
}
elseif(is_user_logged_in())
{
 //not logged in, send them to the login form with a redirect back here
 wp_redirect(wp_login_url(get_permalink($class->ID)));
 exit;
}
else
{
 //not a member of this class, redirect them to the invite page
 wp_redirect($class->invite_url);
 exit;
}

Creating custom plugins is covered in Chapter 3. Extending the WP_User class is cov‐
ered in Chapter 6.

SchoolPress Uses a Few Other Custom Plugins
Occasionally a bit of code will be developed for a particular app that would also be useful
on other projects. If the code can be contained enough that it can run outside of the
context of the current app and main plugin, it can be built into a separate custom plugin.

An example of this would be the force-first-name-last-name plugin that was a require‐
ment for this project. It didn’t require any of the main plugin code to run and is useful
for other WordPress sites outside of the context of the SchoolPress app.

SchoolPress Uses the StartBox Theme Framework
The main schoolpress.me site runs on a customized StartBox child theme. If a school
signs up for a premium subdomain, it can choose from a variety of StartBox child
themes; it also has the ability to change any of the theme’s colors, fonts, and logos to
better fit its branding.

All themes use a responsive design that ensures the site will look good on mobile and
tablet displays as well as desktop displays.

The code in the StartBox theme is very strictly limited to display-related programming.
The theme code obviously includes the HTML and CSS for the site’s layout, but also

18 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://wpstartbox.com
http://www.it-ebooks.info/

contains some simple logic that integrates with the main SchoolPress plugin (like the
preceding branching code). However, any piece of code that manipulates the custom
post types or user roles or involves a lot of calculation is delegated to the SchoolPress
plugin.

Anatomy of a WordPress App | 19

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

WordPress Basics

WordPress was first developed in 2003 and was created primarily as blogging soft‐
ware. By the release of version 3.5, the image of Wordpress had changed from blogging
software to a versatile CMS (content management system) and the word “blog” was
actually removed from the description of the software and in most places in the source
code. Today, it has evolved to become the largest platform on the web and is used on
about 20% of all the websites on the Internet.

There are a couple of reasons WordPress has gained so much popularity over the years.
The first is that WordPress is open source software and has an entire community of
people who are invested in improving it and continually contributing new code to ex‐
tend its functionality. WordPress users, developers, and designers are always thinking
of new creative ways to use WordPress and creating plugins for these new features, which
are then made available to the community.

Another reason WordPress has been so successful is the fact that it is an extremely
flexible CMS and can be used to power all different types of websites. Developers are
constantly exploring innovative new ways to use the software, including using it to build
web applications, which is the focus of this book.

We are going to assume that you already know how to use Word‐
Press, and have already installed the latest version somewhere. If this
is your first time using WordPress, you should check out the book
WordPress for Dummies. Not saying you’re a dummy or anything, but
everyone has to start somewhere.

WordPress Directory Structure
Let’s take a quick top-level look at the folders and files that are included within a typical
WordPress install.

21

www.it-ebooks.info

http://www.it-ebooks.info/

1. … ever, ever, ever …

Root Directory
In the root directory, there are a few core WordPress files. Unless you are digging around
in the core WordPress code looking for hooks to use or certain functionality, the only
file you may need to ever alter is wp-config.php. You should never, ever, ever, ever1 alter
any other core WordPress files. Hacking core is a bad idea because you won’t be able to
upgrade WordPress when a new version becomes available without overriding your
changes. The only directory you should need to interact with is wp-content because it
contains your plugins, themes, and uploaded files.

Any time you find yourself wanting to hack a core WordPress file, think again. There
is probably a hook you could use to accomplish the same goal. If there isn’t a hook
available to do what you need, add one and try to get it added to core. The core Word‐
Press developers are very responsive about adding in new hooks and filters.

/wp-admin
This directory contains core directories and files for managing the WordPress admin
interface. Another key file in this directory is admin-ajax.php, which all AJAX requests
should be run through. AJAX is covered in Chapter 9.

/wp-includes
This directory contains core directories and files for various WordPress functionality.

/wp-content
This directory contains subdirectories for the plugins and themes you have installed on
your site and any media files you upload to your site. If you create a plugin that needs
to store dynamic files of its own, it is a best practice to place them somewhere in the
wp-content folder so they are included in a content backup.

The following directories are subdirectories of the wp-content directory.

/wp-content/plugins
Any WordPress plugin you install on your WordPress site will be located in this direc‐
tory. By default, WordPress comes with the Hello Dolly and Akismet plugins.

22 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

/wp-content/themes
Any WordPress themes you install on your WordPress site will be located in this direc‐
tory. By default, WordPress comes with the Twenty Eleven, Twenty Twelve, Twenty
Thirteen, and Twenty Fourteen themes.

/wp-content/uploads
Once you start uploading any photos or files to your media library, you will start seeing
this directory being populated with those uploaded files. All uploaded media is stored
in the uploads directory.

/wp-content/mu-plugins
In WordPress, you can force the use of any plugin by creating a mu-plugins directory
inside of the wp-content directory. This directory does not exist unless you create it. The
“mu” stands for “must use,” and any plugin you put in the mu-plugins folder will auto‐
matically run without needing to be manually activated on the admin plugins page. In
fact, you won’t even see any must use plugins listed there.

Must use plugins are especially useful on multisite installs of WordPress so you can use
plugins that your individual network site admins won’t be able to deactivate.

WordPress Database Structure
WordPress runs on top of a MySQL database and creates its own tables to store data
and content. Below is the database schema created by a default install of WordPress. We
have also included some basic information on built-in WordPress functions for inter‐
acting with these tables. If you can grasp the database (DB) schema and get comfortable
with the list functions in this chapter, you can push and pull any data into and out of
WordPress.

The following table names use the default prefix of wp_. This prefix
can be changed during the WordPress installation, and so the exact
table names of your WordPress install may vary.

wp_options
The wp_options table stores any sitewide data for you. This table stores the name, de‐
scription, and admin email that you entered when running a typical install. This table
will also come prepopulated with a few records that store the various default settings
within WordPress. Table 2-1 shows the database structure for the wp_options table.

WordPress Database Structure | 23

www.it-ebooks.info

http://www.it-ebooks.info/

2. The third parameter for add_option, which was deprecated in 2.3, used to be a “description” string that was
stored along with the option in the wp_options table.

Table 2-1. DB schema for wp_options table
Column Type Collation Null Default Extra

option_id bigint(20) No None AUTO_INCREMENT

option_name varchar(64) utf8_general_ci No

option_value longtext utf8_general_ci No None

autoload varchar(20) utf8_general_ci No Yes

Functions Found in /wp-includes/option.php
The following functions can all be found in /wp-includes/option.php:

add_option($option, $value = ', $deprecated = ', $autoload = yes)

First checks if an option_name exists before inserting a new row:

• $option—A required string of the option_name you would like to add.
• $value—An optional mixed variable of the option_value you would like to add. If

the variable passed is an array or object, the value will be serialized before storing
in the database.

• $deprecated—This parameter was deprecated in version 2.3 and is not used any‐
more.2

• $autoload—An optional Boolean used to distinguish whether to load the option
into cache when WordPress starts up. Set to yes or no. The default value is no. This
can save you a DB query if you are sure you are going to need this option on every
page load.

update_option($option, $newvalue)
Updates an existing option but will also add it if it doesn’t already exist:

• $option—A required string of the option_name you would like to update/add.
• $newvalue—An optional mixed variable of the option_value you would like to

update/add.

get_option($option, $default = false)

Retrieves the option_value for a provided option_name:

24 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

• $option—A required string of the option_name you would like to get.
• $default—An optional mixed variable you would like to return if the op
tion_name you provided doesn’t exist in the table. By default, this parameter is false.

delete_option($option)
Deletes an existing option from the database permanently:

• $option—A required string of the option_name you would like to delete.

Most of the code examples in this book are not fully functional code.
They are basic theoretical examples of how to use the functions we
are talking about. You can follow along with most of the code exam‐
ples if you like in a custom plugin or your theme’s functions.php file.

Example 2-1 demonstrates some of the basic functions for interacting with the wp_op
tions table.

Example 2-1. Adding, updating, getting, and deleting records in the wp_options table
<?php
// add option
$twitters = array('@bwawwp', '@bmess', '@jason_coleman');
add_option('bwawwp_twitter_accounts', $twitters);

// get option
$bwawwp_twitter_accounts = get_option('bwawwp_twitter_accounts');
echo '<pre>';
print_r($bwawwp_twitter_accounts);
echo '</pre>';

// update option
$twitters = array_merge(
 $twitters,
 array(
 '@webdevstudios',
 '@strangerstudios'
)
);
update_option('bwawwp_twitter_accounts', $twitters);

// get option
$bwawwp_twitter_accounts = get_option('bwawwp_twitter_accounts');
echo '<pre>';
print_r($bwawwp_twitter_accounts);
echo '</pre>';

WordPress Database Structure | 25

www.it-ebooks.info

http://www.it-ebooks.info/

// delete option
delete_option('bwawwp_twitter_accounts');

/*
The output from the above example should look something like this:
Array
(
 [0] => @bwawwp
 [1] => @bmess
 [2] => @jason_coleman
)
Array
(
 [0] => @bwawwp
 [1] => @bmess
 [2] => @jason_coleman
 [3] => @webdevstudios
 [4] => @strangerstudios
)
*/
?>

wp_users
When you log in to WordPress with your username and password, you are referencing
data stored in this table. All users and their default data are stored in the wp_users table.
Table 2-2 shows the database structure for the wp_users table.

Table 2-2. DB schema for wp_users table
Column Type Collation Null Default Extra

ID bigint(20) No None AUTO_INCREMENT

user_login varchar(60) utf8_general_ci No

user_pass varchar(64) utf8_general_ci No

user_nicename varchar(50) utf8_general_ci No

user_email varchar(100) utf8_general_ci No

user_url varchar(100) utf8_general_ci No

user_registered datetime No 0000-00-00 00:00:00

user_activation_key varchar(60) utf8_general_ci No

user_status int(11) No 0

display_name varchar(250) utf8_general_ci No

26 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Functions Found in /wp-includes/…
The following functions are found in /wp-includes/pluggable.php and /wp-includes/
user.php:

wp_insert_user($userdata)
Inserts a new user into the database. This function can also be used to update a user if
the user ID is passed in with the $user_data. $userdata is a required array of field names
and values. The accepted fields are:

• ID—An integer that will be used for updating an existing user.
• user_pass—A string that contains the plain-text password for the user.
• user_login—A string that contains the user’s username for logging in.
• user_nicename—A string that contains a URL-friendly name for the user. The de‐

fault is the user’s username.
• user_url—A string containing the URL for the user’s website.
• user_email—A string containing the user’s email address.
• display_name—A string that will be shown on the site. Defaults to the user’s user‐

name. It is likely that you will want to change this, for appearance.
• nickname—The user’s nickname. Defaults to the user’s username.
• first_name—The user’s first name.
• last_name—The user’s last name.
• description—A string containing content about the user.
• rich_editing—A string for whether to enable the rich editor. False if not empty.
• user_registered—The date the user registered. Format is Y-m-d H:i:s.
• role—A string used to set the user’s role.
• jabber—User’s Jabber account.
• aim—User’s AOL IM account.
• yim—User’s Yahoo IM account.

wp_create_user($username, $password, $email)

This function utilizes the prior function wp_insert_user() and makes it easier to add
a new user based on the required columns:

• $username—A required string of the username/login of a new user.
• $password—A required string of the password of a new user.

WordPress Database Structure | 27

www.it-ebooks.info

http://www.it-ebooks.info/

• $email—A required string of the email address of a new user.

wp_update_user($userdata)

This function can be used to update any of the fields in the wp_users and wp_userme
ta (covered next) tables tied to a specific user. Note that if a user’s password is updated,
all of his cookies will the cleared, logging him out of WordPress:

• $userdata—A required array of field names and values. The ID and at least one
other field is required. These fields are the same ones accepted in the wp_in
sert_post() function.

get_user_by($field, $value)
This function returns the WP_User object on success and false if it fails. The WordPress
User class is found in /wp-includes/capabilities.php and basically queries the wp_user
table like so:

SELECT * FROM wp_users WHERE $field = $value;

The WP_User class also caches the results so it is not querying the database every time
it is used. The class also figures out the roles and capabilities of a specific user, which
we will go over in more detail in Chapter 6:

• $field—A required string of the field you would like to query the user data by. This
string can only be id, slug, email, or login.

• $value—A required integer or string of the value for a given id, slug, email or login.

get_userdata($userid)

This function actually utilizes the previous function get_user_by() and returns the
same WP_User object:

• $userid—A required integer of the user ID of the user you would like to get data
for.

wp_delete_user($id, $reassign = novalue)
You guessed it: this function deletes a user and can also reassign any of their posts or
links to another user:

• $id—A required integer of the ID of the user you would like to delete.

28 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

• $reassign—An optional integer of the ID you would like to reassign any post or
links from the deleted user to. Example 2-2 demonstrates some of the basic func‐
tions for interacting with the wp_users table.

Example 2-2. Working with the wp_users table
<?php
// insert user
$userdata = array(
 'user_login' => 'brian',
 'user_pass' => 'KO03gT7@n*',
 'user_nicename' => 'Brian',
 'user_url' => 'http://webdevstudios.com/',
 'user_email' => 'brian@schoolpress.me',
 'display_name' => 'Brian',
 'nickname' => 'Brian',
 'first_name' => 'Brian',
 'last_name' => 'Messenlehner',
 'description' => 'This is a SchoolPress Administrator account.',
 'role' => 'administrator'
);
wp_insert_user($userdata);

// create users
wp_create_user('jason', 'YR529G%*v@', 'jason@schoolpress.me');

// get user by login
$user = get_user_by('login', 'brian');
echo 'email: ' . $user->user_email . ' / ID: ' . $user->ID . '
';
echo 'Hi: ' . $user->first_name . ' ' . $user->last_name . '
';

// get user by email
$user = get_user_by('email', 'jason@schoolpress.me');
echo 'username: ' . $user->user_login . ' / ID: ' . $user->ID . '
';

// update user - add first and last name to brian and change role to admin
$userdata = array(
 'ID' => $user->ID,
 'first_name' => 'Jason',
 'last_name' => 'Coleman',
 'user_url' => 'http://strangerstudios.com/',
 'role' => 'administrator'
);
wp_update_user($userdata);

// get userdata for brian
$user = get_userdata($user->ID);
echo 'Hi: ' . $user->first_name . ' ' . $user->last_name . '
';

// delete user - delete the original admin and set their posts to our new admin
// wp_delete_user(1, $user->ID);

WordPress Database Structure | 29

www.it-ebooks.info

http://www.it-ebooks.info/

/*
The output from the above example should look something like this:
email: brian@schoolpress.me / ID: 2
Hi: Brian Messenlehner
username: jason / ID: 3
Hi: Jason Coleman
*/
?>

wp_usermeta
Sometimes you may want to store additional data along with a user. WordPress provides
an easy way to do this without having to add additional columns to the users table. You
can store as much user metadata as you need to in the wp_usermeta table. Each record
is associated to a user ID in the wp_user table by the user_id field. Table 2-3 shows the
database structure for the wp_usermeta table.

Table 2-3. DB schema for wp_usermeta table
Column Type Collation Null Default Extra

umeta_id bigint(20) No None AUTO_INCREMENT

user_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

get_user_meta($user_id, $key = '', $single = false)
Gets a user’s meta value for a specified key:

• $user_id—A required integer of a user ID.
• $key—An optional string of the meta key of the value you would like to return. If

blank then all metadata for the given user will be returned.
• $single—A Boolean of whether to return a single value or not. The default is false

and the value will be returned as an array.

There can be more than one meta key for the same user ID with different values. If you
set $single to true, you will get the first key’s value; if you set it to false, you will get
an array of the values of each record with the same key.

30 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

update_user_meta($user_id, $meta_key, $meta_value, $prev_value = '')
This function will update user metadata but will also insert metadata if the passed-in
key doesn’t already exist:

• $user_id—A required integer of a user ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to store. If this meta key already exists, it will update the current row’s meta
value, if not it will insert a new row.

• $meta_value—A required mixed value of an integer, string, array, or object. Arrays
and objects will automatically be serialized.

• $prev_value—An optional mixed value of the current metadata value. If a match is
found, it will replace the previous/current value with the new value you specified.
If left blank, the new meta value will replace the first instance of the matching key.
If you have five rows of metadata with the same key and you don’t specify which
row to update with this value, it will update the first row and remove the other four.

This function relies on the update_metadata() function located
in /wp-includes/meta.php. Check it out!

add_user_meta($user_id, $meta_key, $meta_value, $unique = false)

Yup, this function will insert brand-new user meta into the wp_usermeta table. We don’t
use this function often anymore because we can just use update_user_meta() to insert
new rows as well as update them. If you want to ensure that a given meta key is only
ever used once per user, you should use this function and set the $unique parameter to
true:

• $user_id—A required integer of a user ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to store.
• $meta_value—A required mixed value of an integer, string, array, or object.
• $unique—An optional Boolean, which when set to true will make sure the meta

key can only ever be added once for a given ID.

WordPress Database Structure | 31

www.it-ebooks.info

http://www.it-ebooks.info/

delete_user_meta($user_id, $meta_key, $meta_value = '')
Deletes user metadata for a provided user ID and matching key. You can also specify a
matching meta value if you only want to delete that value and not other metadata rows
with the same meta key:

• $user_id—A required integer of a user ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to delete.
• $meta_value—An optional mixed value of the meta value. If you have more than

one record with the same meta key, you can specify which one to delete by matching
the meta value. It defaults to nothing, which will delete all meta rows with a match‐
ing user_id and meta_key.

Example 2-3 demonstrates some of the basic functions for interacting with the wp_user
name table.

Example 2-3. Working with the wp_username table
<?php
// get brian's id
$brian_id = get_user_by('login', 'brian')->ID;

// add user meta - unique is set to true. no polygamy! only
 one wife at a time.
add_user_meta($brian_id, 'bwawwp_wife', 'Robin Jade Morales Messenlehner', true);

// get user meta - returning a single value
$brians_wife = get_user_meta($brian_id, 'bwawwp_wife', true);
echo "Brian's wife: " . $brians_wife . "
";

// add user meta - no 3rd parameter/unique. can have as many kids
 as wife will let me.
add_user_meta($brian_id, 'bwawwp_kid', 'Dalya');
add_user_meta($brian_id, 'bwawwp_kid', 'Brian');
add_user_meta($brian_id, 'bwawwp_kid', 'Nina');

// update user meta - this will update brian to brian jr.
update_user_meta($brian_id, 'bwawwp_kid', 'Brian Jr', 'Brian');

// get user meta - returning an array
$brians_kids = get_user_meta($brian_id, 'bwawwp_kid');
echo "Brian's kids:";
echo '<pre>';
print_r($brians_kids);
echo '</pre>';

// delete brian's user meta
delete_user_meta($brian_id, 'bwawwp_wife');
delete_user_meta($brian_id, 'bwawwp_kid');

32 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

// get jason's id
$jason_id = get_user_by('login', 'jason')->ID;

// update user meta - this will create meta if the key doesn't exist for the user.
update_user_meta($jason_id, 'bwawwp_wife', 'Kimberly Ann Coleman');

// get user meta - returning an array
$jasons_wife = get_user_meta($jason_id, 'bwawwp_wife');
echo "Jason's wife:";
echo '<pre>';
print_r($jasons_wife);
echo '</pre>';

// add user meta - storing as an array
add_user_meta($jason_id, 'bwawwp_kid', array('Isaac', 'Marin'));

// get user meta - returning a single value which happens to be an array.
$jasons_kids = get_user_meta($jason_id, 'bwawwp_kid', true);
echo "Jason's kids:";
echo '<pre>';
print_r($jasons_kids);
echo '</pre>';

// delete jason's user meta
delete_user_meta($jason_id, 'bwawwp_wife');
delete_user_meta($jason_id, 'bwawwp_kid');

/*
The output from the above example should look something like this:
Brian's wife: Robin Jade Morales Messenlehner
Brian's kids:
Array
(
 [0] => Dalya
 [1] => Brian Jr
 [2] => Nina
)
Jason's wife:
Array
(
 [0] => Kimberly Ann Coleman
)
Jason's kids:
Array
(
 [0] => Isaac
 [1] => Marin
)
*/
?>

WordPress Database Structure | 33

www.it-ebooks.info

http://www.it-ebooks.info/

wp_posts
Ah, the meat of WordPress. The wp_posts table is where most of your post data is
stored. By default, WordPress comes with posts and pages. Both of these are technically
posts and are stored in this table. The post_type field is what distinguishes what type
of post a post is, whether it is a post, a page, a menu item, a revision, or any custom post
type that you may later create (custom post types are covered more in Chapter 5).
Table 2-4 shows the database structure for the wp_posts table.

Table 2-4. DB schema for wp_posts table
Column Type Collation Null Default Extra

ID bigint(20) No None AUTO_INCREMENT

post_author bigint(20) No 0

post_date datetime No 0000-00-00 00:00:00

post_date_gmt datetime No 0000-00-00 00:00:00

post_content longtext utf8_general_ci No None

post_title text utf8_general_ci No None

post_excerpt text utf8_general_ci No None

post_status varchar(20) utf8_general_ci No Publish

comment_status varchar(20) utf8_general_ci No Open

ping_status varchar(20) utf8_general_ci No Open

post_password varchar(20) utf8_general_ci No

post_name varchar(200) utf8_general_ci No

to_ping text utf8_general_ci No None

pinged text utf8_general_ci No None

post_modified datetime No 0000-00-00 00:00:00

post_modified_gmt datetime No 0000-00-00 00:00:00

post_content_filtered longtext utf8_general_ci No None

post_parent bigint(20) No 0

guid varchar(255) utf8_general_ci No

menu_order int(11) No 0

post_type varchar(20) utf8_general_ci No Post

post_mime_type varchar(100) utf8_general_ci No

comment_count bigint(20) No 0

Functions found in /wp-includes/post.php
The following functions are found in /wp-includes/post.php.

34 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

wp_insert_post($postarr, $wp_error = false)
Inserts a new post with provided post data:

• $postarr—An array or object of post data. Arrays are expected to be escaped; objects
are not.

• $wp_error—An optional Boolean that will allow for a WP_Error if returned false.

The defaults for the parameter $postarr are:

• post_status—Default is draft.
• post_type—Default is post.
• post_author—Default is current user ID ($user_ID). The ID of the user who added

the post.
• ping_status—Default is the value in the default_ping_status option. Whether the

attachment can accept pings.
• post_parent—Default is 0. Set this for the post it belongs to, if any.
• menu_order—Default is 0. The order it is displayed.
• to_ping—Whether to ping.
• pinged—Default is empty string.
• post_password—Default is empty string. The password to access the attachment.
• guid—Global unique ID for referencing the attachment.
• post_content_filtered—Post content filtered.
• post_excerpt—Post excerpt.

wp_update_post($postarr = array(), $wp_error = false)
Updates a post with provided post data.

• $postarr—A required array or object of post data. Arrays are expected to be escaped,
objects are not.

• $wp_error—An optional Boolean that will allow for a WP_Error if returned false.

get_post($post = null, $output = OBJECT, $filter = raw)
Get post data from a provided post ID or a post object:

• $post—An optional integer or object of the post ID or post object you want to
retrieve. The default is the current post you are on inside of the post loop, which is
covered later in this chapter.

WordPress Database Structure | 35

www.it-ebooks.info

http://www.it-ebooks.info/

• $output—An optional string of the output format. The default value is OBJECT
(WP_Post object) and the other values can be ARRAY_A (associative array) or AR
RAY_N (numeric array).

• $filter—An optional string of how the context should be sanitized on output. The
default value is raw, but other values can be edit, db, display, attribute, or js.
Sanitization is covered in Chapter 8.

get_posts($args = null)

Returns a list of posts from matching criteria. This function uses the WP_Query class,
which you will see examples of throughout the book: $args is an optional array of post
arguments. The defaults are:

• numberposts—Default is 5. Total number of posts to retrieve. –1 is all.
• offset—Default is 0. Number of posts to pass over.
• category—What category to pull the posts from.
• orderby—Default is post_date. How to order the posts.
• order—Default is DESC. The order to retrieve the posts.
• include—A list of post IDs to include
• exclude—A list of post IDs to exclude
• meta_key—Any metadata key
• meta_value—Any metadata value. Must also use meta_key.
• post_type—Default is post. Can be page, or attachment, or the slug for any custom

CPT. The string any will return posts from all post types.
• post_parent—The parent ID of the post.
• post_status—Default is publish. Post status to retrieve.

wp_delete_post($postid = 0, $force_delete = false)

This function will trash any post or permanently delete it if $force_delete is set to true:

• $postid—A required integer of the post ID you would like to trash or delete.
• $force_delete—An optional Boolean that if set to true will delete the post; if left

blank, it will default to false and will move the post to a deleted status.

Example 2-4 demonstrates some of the basic functions for interacting with the wp_posts
table.

36 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-4. Working with the wp_posts table
<?php
// insert post - set post status to draft
$args = array(
 'post_title' => 'Building Web Apps with WordPress',
 'post_excerpt' => 'WordPress as an Application Framework',
 'post_content' => 'WordPress is the key to successful cost effective
 web solutions in most situations. Build almost anything on top of the
 WordPress platform. DO IT NOW!!!!',
 'post_status' => 'draft',
 'post_type' => 'post',
 'post_author' => 1,
 'menu_order' => 0
);
$post_id = wp_insert_post($args);
echo 'post ID: ' . $post_id . '
';

// update post - change post status to publish
$args = array(
 'ID' => $post_id,
 'post_status' => 'publish'
);
wp_update_post($args);

// get post - return post data as an object
$post = get_post($post_id);
echo 'Object Title: ' . $post->post_title . '
';

// get post - return post data as an array
$post = get_post($post_id, ARRAY_A);
echo 'Array Title: ' . $post['post_title'] . '
';

// delete post - skip the trash and permanently delete it
wp_delete_post($post_id, true);

// get posts - return 100 posts
$posts = get_posts(array('numberposts' => '100'));
// loop all posts and display the ID & title
foreach ($posts as $post) {
 echo $post->ID . ': ' .$post->post_title . '
';
}

/*
The output from the above example should look something like this:
post ID: 589
Object Title: Building Web Apps with WordPress
Array Title: Building Web Apps with WordPress
"A list of post IDs and Titles from your install"
*/
?>

WordPress Database Structure | 37

www.it-ebooks.info

http://www.it-ebooks.info/

wp_postmeta
Sometimes you may want to store additional data along with a post. WordPress provides
an easy way to do this without having to add additional fields to the posts table. You can
store as much post metadata as you need to in the wp_postmeta table. Each record is
associated to a post through the post_id field. When editing any post in the backend
of WordPress, you can add/update/delete metadata or Custom Fields via the UI.
Table 2-5 shows the database structure for the wp_postmeta table.

Metadata keys that start with an underscore are hidden from the
Custom Fields UI on the edit post page. This is useful to hide cer‐
tain meta fields that you don’t want end users editing directly.

Table 2-5. DB schema for wp_postmeta table
Column Type Collation Null Default Extra

meta_id bigint(20) No None AUTO_INCREMENT

post_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

Functions Found in /wp-includes/post.php
The following functions are found in /wp-includes/post.php.

get_post_meta($post_id, $key = '', $single = false)
Get post metadata for a given post:

• $post_id—A required integer of the post ID, for which you would like to retrieve
post meta.

• $key—Optional string of the meta key name for which you would like to retrieve
post meta. The default is to return metadata for all of the meta keys for a particular
post.

• $single—A Boolean of whether to return a single value or not. The default is
false, and the value will be returned as an array.

There can be more than one meta key for the same post ID with different values. If you
set $single to true, you will get the first key’s value; if it is set to false, you will get an
array of the values of each record with the same key.

38 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

update_post_meta($post_id, $meta_key, $meta_value, $prev_value = '')
This function will update post metadata but will also insert metadata if the passed-in
key doesn’t already exist:

• $post_id—A required integer of a post ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to store. If this meta key already exists, it will update the current row’s meta
value; if not, it will insert a new row.

• $meta_value—A required mixed value of an integer, string, array, or object. Arrays
and objects will automatically be serialized.

• $prev_value—An optional mixed value of the current metadata value. If a match is
found, it will replace the previous/current value with the new value you specified.
If left blank, the new meta value will replace the first instance of the matching key.
If you have five rows of metadata with the same key and you don’t specify which
row to update with this value, it will update the first row and remove the other four.

This function relies on the update_metadata() function located in /
wp-includes/meta.php. Check it out!

add_post_meta($post_id, $meta_key, $meta_value, $unique = false)

This function will insert brand-new post meta into the wp_postmeta table. We don’t use
this function so often anymore because we can just use the previous function we talked
about, update_post_meta(), to insert new rows as well as update them. If you want to
insure that a given meta key is only ever used once per post, you should use this function
and set the $unique parameter to true:

• $user_id—A required integer of a post ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to store.
• $meta_value—A required mixed value of an integer, string, array, or an object.
• $unique—An optional Boolean that when set to true will make sure the meta key

can only ever be added once for a given ID.

WordPress Database Structure | 39

www.it-ebooks.info

http://www.it-ebooks.info/

delete_post_meta($post_id, $meta_key, $meta_value = '')
Deletes post metadata for a provided post ID and matching key. You can also specify a
matching meta value if you only want to delete that value and not other metadata rows
with the same meta key:

• $post_id - A required integer of a post ID.
• $meta_key - A required string of the
• $meta_value - An optional mixed value of the meta value. If you have more than

one record with the same meta key, you can specify which one to delete by matching
this value. It defaults to nothing, which will delete all meta rows with a matching
post_id and meta_key.

In Example 2-5 we will get the last post and add, update, and delete various post meta.

Example 2-5. Working with post metadata
<?php
// get posts - return the latest post
$posts = get_posts(array('numberposts' => '1', 'orderby' =>
 'post_date', 'order' => 'DESC'));
foreach ($posts as $post) {
 $post_id = $post->ID;

 // update post meta - public metadata
 $content = 'You SHOULD see this custom field when editing your latest post.';
 update_post_meta($post_id, 'bwawwp_displayed_field', $content);

 // update post meta - hidden metadata
 $content = str_replace('SHOULD', 'SHOULD NOT', $content);
 update_post_meta($post_id, '_bwawwp_hidden_field', $content);

 // array of student logins
 $students[] = 'dalya';
 $students[] = 'ashleigh';
 $students[] = 'lola';
 $students[] = 'isaac';
 $students[] = 'marin';
 $students[] = 'brian';
 $students[] = 'nina';

 // add post meta - one key with array as value, array will be serialized
 // automatically
 add_post_meta($post_id, 'bwawwp_students', $students, true);

 // loop students and add post meta record for each student
 foreach ($students as $student) {
 add_post_meta($post_id, 'bwawwp_student', $student);
 }

40 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

 // get post meta - get all meta keys
 $all_meta = get_post_meta($post_id);
 echo '<pre>';
 print_r($all_meta);
 echo '</pre>';

 // get post meta - get 1st instance of key
 $student = get_post_meta($post_id, 'bwawwp_student', true);
 echo 'oldest student: ' . $student;

 // delete post meta
 delete_post_meta($post_id, 'bwawwp_student');
}

/*
The output from the above example should look something like this:
Array
(
 [_bwawwp_hidden_field] => Array
 (
 [0] => You SHOULD NOT see this custom field when editing your latest post.
)

 [bwawwp_displayed_field] => Array
 (
 [0] => You SHOULD see this custom field when editing your latest post.
)

 [bwawwp_students] => Array
 (
 [0] => a:7:{i:0;s:5:"dalya";i:1;s:8:"ashleigh";i:2;s:4:"lola";i:3;s:5:
 "isaac";i:4;s:5:"marin";i:5;s:5:"brian";i:6;s:4:"nina";}
)

 [bwawwp_student] => Array
 (
 [0] => dalya
 [1] => ashleigh
 [2] => lola
 [3] => isaac
 [4] => marin
 [5] => brian
 [6] => nina
)
)
oldest student: dalya
*/
?>

WordPress Database Structure | 41

www.it-ebooks.info

http://www.it-ebooks.info/

wp_comments
Comments can be left against any post. The wp_comments table stores individual com‐
ments for any post and default associated data. Table 2-6 shows the database structure
for the wp_comments table.

Table 2-6. DB schema for wp_comments table
Column Type Collation Null Default Extra

comment_ID bigint(20) No None AUTO_INCREMENT

comment_post_ID bigint(20) No 0

comment_author tinytext utf8_general_ci No

comment_author_email varchar(100) utf8_general_ci No

comment_author_url varchar(200) utf8_general_ci No

comment_author_IP varchar(100) utf8_general_ci No

comment_date datetime No 0000-00-00 00:00:00

comment_date_gmt datetime No 0000-00-00 00:00:00

comment_content text utf8_general_ci No None

comment_karma int(11) No 0

comment_approved varchar(20) utf8_general_ci No 1

comment_agent varchar(20) utf8_general_ci No

comment_type varchar(20) utf8_general_ci No

comment_parent bigint(20) No 0

user_id bigint(20) No 0

Functions Found in /wp-includes/comment.php
The following functions are found in /wp-includes/comment.php.

get_comment($comment, $output = OBJECT)
Returns comment data from a comment ID or comment object. If the comment is empty,
then the global comment variable will be used if set:

• $comment—An optional integer, string, or object of a comment ID or object.
• $output—An optional string that defines what format the output should be in.

Possible values are OBJECT, ARRAY_A, and ARRAY_N.

42 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

get_comments($args = '')
This function retrieves a list of comments for specific posts or a single post. It calls the
WP_Comment_Query class, which we will cover in the next chapter. $args are an optional
array or string of arguments to query comments. The default arguments are:

• author_email—A string of a comment author’s email address.
• ID—An integer of the ID of a comment.
• karma—An integer of a comment’s karma, which can be used by plugins for rating.
• number—An integer of the number of comments to return. Default is all comments.
• offset—An integer of the number of comments to pass over. Default is 0.
• orderby—A string of the field to order the comment by. Allowed values are:
comment_agent, comment_approved, comment_author, comment_author_email,
comment_author_IP, comment_author_url, comment_content, comment_date, com
ment_date_gmt, comment_ID, comment_karma, comment_parent, com

ment_post_ID, comment_type, user_id.
• order—A string of how to order the selected order by argument. Defaults to DESC

and also accepts ASC.
• parent—An integer of a comment’s parent comment ID.
• post_id—An integer of the post ID a comment is attached to.
• post_author—An integer of the post author ID a comment is attached to.
• post_name—A string of the post name a comment is attached to.
• post_parent—An integer of the post parent ID a comment is attached to.
• post_status—A string of the post status a comment is attached to.
• post_type—A string of the post type a comment is attached to.
• status—A string of the status of a comment. Optional values are hold, approve,
spam, or trash.

• type—A string of the type of a comment. Optional values are '', pingback, or
trackback.

• user_id—An integer of the user ID of a comment.
• search—A string of search terms to search a comment on. Searches the comment_au
thor, comment_author_email, comment_author_url, comment_author_IP, and
comment_content fields.

• count—A Boolean that will make the query return a count or results. The default
value is false.

• meta_key—The comment meta key of comment meta to search on.

WordPress Database Structure | 43

www.it-ebooks.info

http://www.it-ebooks.info/

• meta_value—The comment meta value of comment meta to search on; meta_key
is required.

wp_insert_comment($commentdata)
Inserts a comment into the database:

• $commentdata—A required array of comment fields and values to be inserted.
Available fields to be inserted are comment_post_ID, comment_author, comment_au
thor_email, comment_author_url, comment_author_IP, comment_date, com

ment_date_gmt, comment_content, comment_karma, comment_approved, com

ment_agent, comment_type, comment_parent, and user_id.

wp_update_comment($commentarr)
Updates comment data and filters to make sure all required fields are valid before up‐
dating in the database:

• $commentarr - An optional array of arguments containing comment fields and
values to be updated. These are the same field arguments just listed for the wp_in
sert_comment() function.

wp_delete_comment($comment_id, $force_delete = false)
Deletes a comment. By default, it will trash the comment unless specified to permanently
delete:

• $comment_id - A required integer of the comment ID to trash/delete.
• $force_delete - An optional Boolean that if set to true will permanently delete a

comment. Example 2-6 demonstrates some of the basic functions for interacting
with the wp_comments table.

Example 2-6 demonstrates managing comment data attached to a post.

Example 2-6. Working with the wp_comments table
<?php
// insert post
$args = array(
 'post_title' => '5 year anniversary on 9/10/16',
 'post_content' => 'Think of somthing cool to do and make a comment about it!',
 'post_status' => 'publish'
);
$post_id = wp_insert_post($args);
echo 'post ID: ' . $post_id . ' - ' . $args['post_title'] . '
';

44 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

// make comments array
$comments[] = 'Take a trip to South Jersey';
$comments[] = 'Dinner at Taco Bell';
$comments[] = 'Make a baby';

//loop comments array
foreach ($comments as $key => $comment) {
 // insert comments
 $commentdata = array(
 'comment_post_ID' => $post_id,
 'comment_content' => $comments[$key],
);
 $comment_ids[] = wp_insert_comment($commentdata);
}
echo 'comments:<pre>';
print_r($comments);
echo '</pre>';

// update comment
$commentarr['comment_ID'] = $comment_ids[0];
$commentarr['comment_content'] = 'Take a trip to Paris, France';
wp_update_comment($commentarr);

// insert comment - sub comment from parent id
$commentdata = array(
 'comment_post_ID' => $post_id,
 'comment_parent' => $comment_ids[0],
 'comment_content' => 'That is a pretty good idea...',
);
wp_insert_comment($commentdata);

// get comments - search taco bell
$comments = get_comments('search=Taco Bell&number=1');
foreach ($comments as $comment) {
 // insert comment - sub comment of taco bell comment id
 $commentdata = array(
 'comment_post_ID' => $post_id,
 'comment_parent' => $comment->comment_ID,
 'comment_content' => 'Do you want to get smacked up?',
);
 wp_insert_comment($commentdata);
}

// get comment - count of comments for this post
$comment_count = get_comments('post_id= ' . $post_id . '&count=true');
echo 'comment count: ' . $comment_count . '
';

// get comments - get all comments for this post
$comments = get_comments('post_id=' .$post_id);
foreach ($comments as $comment) {
 // update 1st comment

WordPress Database Structure | 45

www.it-ebooks.info

http://www.it-ebooks.info/

 if ($comment_ids[0] == $comment->comment_ID) {
 $commentarr = array(
 'comment_ID' => $comment->comment_ID,
 'comment_content' => $comment->comment_content . ' & make a baby!',
);
 wp_update_comment($commentarr);
 // delete all other comments
 }else {
 // delete comment
 wp_delete_comment($comment->comment_ID, true);
 }
}

// get comment - new comment count
$comment_count = get_comments('post_id= ' . $post_id . '&count=true');
echo 'new comment count: ' . $comment_count . '
';

// get comment - get best comment
$comment = get_comment($comment_ids[0]);
echo 'best comment: ' . $comment->comment_content;

/*
The output from the above example should look something like this:
post ID: 91011 - 5 year anniversary on 9/10/16
comments:
Array
(
 [0] => Take a trip to South Jersey
 [1] => Dinner at Taco Bell
 [2] => Make a baby
)
comment count: 5
new comment count: 1
best comment: Take a trip to Paris, France & make a baby!
*/
?>

wp_commentsmeta
Just like the wp_usermeta and wp_postmeta table, this table stores any custom, addi‐
tional data tied to a comment by the comment_id fields. Table 2-7 shows the database
structure for the wp_commentsmeta table.

Table 2-7. DB schema for wp_commentsmeta table
Column Type Collation Null Default Extra

meta_id bigint(20) No None AUTO_INCREMENT

comment_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

46 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Functions Found in /wp-includes/comment.php
The following functions are found in /wp-includes/comment.php.

get_comment_meta($comment_id, $key = '', $single = false)
Get comment meta for a given comment ID:

• $comment_id—A required integer of the comment ID for which you would like to
retrieve comment meta.

• $key—Optional string of the meta key name for which you would like to retrieve
comment meta. The default is to return metadata for all of the meta keys for a
particular post.

• $single—A Boolean of whether to return a single value or not. The default is
false, and the value will be returned as an array.

add_comment_meta($comment_id, $meta_key, $meta_value, $unique = false)
Add comment meta for given comment ID:

• $comment_id—A required integer of a comment ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to store.
• $meta_value—A required mixed value of an integer, string, array, or object.
• $unique—An optional Boolean that when set to true will make sure the meta key

can only ever be added once for a given ID.

update_comment_meta($comment_id, $meta_key, $meta_value, $prev_value = '')

• $comment_id—A required integer of a comment ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to store. If this meta key already exists, it will update the current row’s meta
value; if not, it will insert a new row.

• $meta_value—A required mixed value of an integer, string, array, or object. Arrays
and objects will automatically be serialized.

• $prev_value—An optional mixed value of the current metadata value. If a match is
found, it will replace the previous/current value with the new value you specified.
If left blank, the new meta value will replace the first instance of the matching key.
If you have five rows of metadata with the same key and you don’t specify which
row to update with this value, it will update the first row and remove the other four.

WordPress Database Structure | 47

www.it-ebooks.info

http://www.it-ebooks.info/

delete_comment_meta($comment_id, $meta_key, $meta_value = '')
Deletes comment metadata for a provided comment ID and matching key. You can also
specify a matching meta value if you only want to delete that value and not other met‐
adata rows with the same meta key:

• $comment_id—A required integer of a comment ID.
• $meta_key—A required string of the meta key name for the meta value you would

like to delete.
• $meta_value—An optional mixed value of the meta value. If you have more than

one record with the same meta key, you can specify which one to delete by matching
this value. It defaults to nothing, which will delete all meta rows with a matching
post_id and meta_key.

Example 2-7 demonstrates some of the basic functions for interacting with the wp_com
mentsmeta table.

Example 2-7. Working with the wp_commentsmeta table
<?php
// get comments - last comment ID
$comments = get_comments('number=1');
foreach ($comments as $comment) {
 $comment_id = $comment->comment_ID;

 // add comment meta - meta for view date & IP address
 $viewed = array(date("m.d.y"), $_SERVER["REMOTE_ADDR"]);
 $comment_meta_id = add_comment_meta($comment_id, 'bwawwp_view_date',
 $viewed, true);
 echo 'comment meta id: ' . $comment_meta_id;

 // update comment meta - change date format to format like
 // October 23, 2020, 12:00 am instead of 10.23.20
 $viewed = array(date("F j, Y, g:i a"), $_SERVER["REMOTE_ADDR"]);
 update_comment_meta($comment_id, 'bwawwp_view_date', $viewed);

 // get comment meta - all keys
 $comment_meta = get_comment_meta($comment_id);
 echo '<pre>';
 print_r($comment_meta);
 echo '</pre>';

 // delete comment meta
 delete_comment_meta($comment_id, 'bwawwp_view_date');
}

/*
The output from the above example should look something like this:
comment meta id: 16
Array

48 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

(
 [bwawwp_view_date] => Array
 (
 [0] => a:2:{i:0;s:24:"August 11, 2013, 4:16 pm";i:1;s:9:"127.0.0.1";}
)

)
*/
?>

wp_links
This table stores any links, URLs, or bookmarks you create. Since WordPress version
3.5, the links/blogroll manager UI has been hidden, so if you do a fresh install and don’t
see it, don’t freak out. You can still use the links/blogroll manager if you choose by
installing Andrew Nacin’s link manager plugin. If you are upgrading WordPress from
a version prior to 3.5, you will still be able to access the UI. Why was this removed, you
might ask? If Andrew pulled it out of core, you can bet he had a good reason for it. Once
you read about custom post types in Chapter 5, you should be enlightened. Because this
feature is on it’s way out, we aren’t going to go over some of the basic helper functions
used to interact with this table. Table 2-8 shows the database structure for the wp_links
table.

Table 2-8. DB schema for wp_links table
Column Type Collation Null Default Extra

link_id bigint(20) No None AUTO_INCREMENT

link_url varchar(255) utf8_general_ci No

link_name varchar(255) utf8_general_ci No

link_image varchar(255) utf8_general_ci No

link_target varchar(25) utf8_general_ci No

link_description varchar(255) utf8_general_ci No

link_visible varchar(20) utf8_general_ci No Yes

link_owner bigint(20) No 1

link_rating int(11) No 0

link_updated datetime No 0000-00-00 00:00:00

link_rel varchar(255) utf8_general_ci No

link_notes mediumtext utf8_general_ci No None

link_rss varchar(255) utf8_general_ci No

WordPress Database Structure | 49

www.it-ebooks.info

https://twitter.com/nacin
http://bit.ly/link-manager
http://www.it-ebooks.info/

Bookmark functions can be found in /wp-includes/bookmark.php.

wp_terms
The wp_terms table stores each category name or term name that you create. Each record
is tied to its taxonomy in the wp_term_taxonomy table by the term_id. So you’re familiar
with post categories and tags? Well, each category or tag is stored in this table, and
technically they are both taxonomies. Every term that is stored in the name column is
a taxonomy term. We will be covering taxonomies in much more detail in Chapter 5,
so if you don’t fully grasp what a taxonomy is, you will soon. Table 2-9 shows the database
structure for the wp_terms table.

Table 2-9. DB schema for wp_terms table
Column Type Collation Null Default Extra

term_id bigint(20) No None AUTO_INCREMENT

name varchar(200) No

slug varchar(200) utf8_general_ci No

term_group bigint(10) No 0

Functions Found in /wp-includes/taxonomy.php
The following functions are found in /wp-includes/taxonomy.php.

get_terms($taxonomies, $args = '')
Gets the terms of a specific taxonomy or an array of taxonomies:

• $taxonomies—A required string or array of a taxonomy or list of taxonomies.
• $args—An optional string or array of arguments. Available arguments are:

• orderby—Default is name. Can be name, count, term_group, slug, or nothing,
which will use term_id. Passing a custom value other than these will cause the
terms to be ordered on that custom value.

• order—ASC or DESC. The default is ASC.
• hide_empty—The default value is true, which will only return terms that are

attached to a post. If set to false, you can return all terms regardless, if they are
being used by a post or not.

50 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

• exclude—An array or comma-separated or space-delimited string of term IDs to
exclude from the query results. If include is being used, exclude will be ignored.

• exclude_tree—An array or comma-separated or space-delimited string of term
IDs to exclude from the query results, including any child terms. If include is
being used, exclude_tree will be ignored.

• include—An array or comma-separated or space-delimited string of term IDs to
include in the query results.

• number—The number of terms for the query to return. The default is all.
• offset—The number by which to offset the terms query.
• fields—You can specify if you want to return term IDs or names. The default is
all, which returns an array of term objects.

• slug—A string that will return any terms that have a matching slug.
• hierarchical—Includes all child terms if they are attached to posts. The default is
true, so to not return terms hierarchically, set this to false.

• search—A string that will return any terms whose names match the value pro‐
vided. The search is case-insensitive.

• name_like—A string that will return any terms whose names begin with the value
provided. Like the search, this is case-insensitive.

• pad_counts—If set to true, the query results will include the count of each term’s
children.

• get—If set to all, returns terms regardless of ancestry or whether the terms are
empty.

• child_of—When set to a term ID, the query results will contain all descendants
of the provided term ID. The default is 0, which returns everything.

• parent—When set to a term ID, the query results will contain the direct children
of the provided term ID. The default is an empty string.

• cache_domain—Enables a unique cache key to be produced when this query is
stored in object cache.

get_term($term, $taxonomy, $output = OBJECT, $filter = raw)
Get all term data for any given term:

• $term—A required integer or object of the term to return.
• $taxonomy—A required string of the taxonomy of the term to return.

WordPress Database Structure | 51

www.it-ebooks.info

http://www.it-ebooks.info/

• $output—An optional string of the output format. The default value is OBJECT, and
the other values can be ARRAY_A (associative array) or ARRAY_N (numeric array).

• $filter—An optional string of how the context should be sanitized on output. The
default value is raw.

wp_insert_term($term, $taxonomy, $args = array())
Adds a new term to the database:

• $term—A required string of the term to add or update.
• $taxonomy—A required string of the taxonomy the term will be added to.
• $args—An optional array or string of term arguments to be inserted/updated.

Available arguments are:

• alias_of—An optional string of the slug that the term will be an alias of.
• description—An optional string that describes the term.
• parent—An optional integer of the parent term ID that this term will be a

child of.
• slug—An optional string of the slug of the term.

wp_update_term($term_id, $taxonomy, $args = array())
Updates an existing term in the database:

• $term_id—A required integer of the term ID of the term you want to update.
• $taxonomy—A required string of the taxonomy the term is associated with.
• $args—An optional array or string of term arguments to be updated. These are the

same arguments used in wp_insert_term().

wp_delete_term($term, $taxonomy, $args = array())
Deletes a term from the database. If the term is a parent of other terms, then the children
will be updated to that term’s parent:

• $term—A required integer of the term ID of the term you want to delete.
• $taxonomy—A required string of the taxonomy the term is associated with.
• $args—An optional array to overwrite term field values.

52 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

wp_term_taxonomy
The wp_term_taxonomy table stores each taxonomy type you are using. WordPress has
two taxonomy types built in, category and post_tag, but you can also register your own
taxonomies. When a new term gets added in the wp_terms table, it is associated with its
taxonomy in this table, along with that taxonomy term ID, description, parent, and
count. Table 2-10 shows the structure for the wp_term_taxonomy table.

Table 2-10. DB schema for wp_term_taxonomy table
Column Type Collation Null Default Extra

term_taxonomy_id bigint(20) No None AUTO_INCREMENT

term_id bigint(20) No 0

taxonomy varchar(32) utf8_general_ci No

description longtext utf8_general_ci No None

parent bigint(20) No 0

count bigint(20) No 0

/wp-includes/taxonomy.php
The following functions are found in /wp-includes/taxonomy.php.

get_taxonomies($args = array(), $output = names, $operator = and)
This function returns a list of registered taxonomy objects or a list of taxonomy names:

• $args—An optional array of arguments to query what taxonomy objects get re‐
turned. There are a lot, and we will cover all of them in Chapter 5.

• $output—An optional string of either names or objects. The default is names, which
will return a list of taxonomy names.

• $operator—An optional string of either and or or. The default is and, which means
that all of the arguments passed in must match. If set to or, any of the arguments
passed in can match.

get_taxonomy($taxonomy)
This function will first check that the parameter string given is a taxonomy object; and
if it is, it will return it:

• $taxonomy—A required string of the name of the taxonomy object to return.

WordPress Database Structure | 53

www.it-ebooks.info

http://www.it-ebooks.info/

register_taxonomy($taxonomy, $object_type, $args = array())
This function creates or updates a taxonomy object. Registering custom taxonomies
can really extend WordPress because you can categorize your posts anyway you see
fit. We are going to go over registering taxonomies in much more detail in Chapter 5:

• $taxonomy - A required string of the name of the taxonomy.
• $object_type - A required array or string of the object types (post types like post

and page) that this taxonomy will be tied to.
• $args - An optional array or string of arguments. There are a lot, and we will cover

all of them in Chapter 5.

wp_term_relationships
The wp_term_relationships table relates a taxonomy term to a post. Every time you
assign a category or tag to a post, it’s being linked to that post in this table. Table 2-11
shows the structure for the wp_term_relationships table.

Table 2-11. DB schema for wp_term_relationships table
Column Type Collation Null Default Extra

object_id bigint(20) No 0

term_taxonomy_id bigint(20) No 0

term_order int(11) No 0

get_object_taxonomies($object, $output = names)
This function returns all taxonomies associated with a post type or post object:

• $object—A required array, string, or object of the name(s) of the post type(s) or
post object(s).

• $output—An optional string of either names or objects. The default is names, which
will return a list of taxonomy names.

wp_get_object_terms($object_ids, $taxonomies, $args = array())
This function returns terms associated with a supplied post object ID or IDs and a
supplied taxonomy.

• $object_ids—A required string or array of object IDs for the object terms you would
like to return. Passing in a post ID would return terms associated with that post ID.

54 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

• $taxonomies—A required string or array of the taxonomy names from which you
want to return terms. Passing in the taxonomy post_tag would return terms of the
post_tag taxonomy.

• $args—An optional array or string of arguments that change how the data is re‐
turned. The arguments that can be changed are:

• orderby—Defaults to name; also accepts count, slug, term_group, term_order,
and none.

• order—Defaults to ASC; also accepts DESC.
• fields—Defaults to all; also accepts ids, names, slugs, and all_with_ob
ject_id. This argument will dictate what values will be returned.

wp_set_object_terms($object_id, $terms, $taxonomy, $append = false)
This function adds taxonomy terms to a provided object ID and taxonomy. It has the
ability to overwrite all terms or to append new terms to existing terms. If a term passed
into this function doesn’t already exist, it will be created and then related to the provided
object ID and taxonomy:

• $object_id—A required integer of the object ID (post ID) to relate your terms to.
• $terms—A required array, integer, or string of the terms you would like to add to

an object (post).
• $taxonomy—A required array or string of the taxonomy or taxonomies you want

to relate your terms to.
• $append—An optional Boolean that defaults to false that will replace any existing

terms related to an object ID with the new terms you provided. If set to true, your
new terms will be appended to the existing terms.

Discussion is underway to remove the wp_terms table from Word‐
Press in a future release. The name and slug columns of wp_terms
will be moved into the wp_terms_taxonomy table, and a MySQL view
will be created called wp_terms that can be queried against, preserv‐
ing backward compatibility for your custom queries.

Extending WordPress
If you are looking to write your own functionality or customize the data returned by
WordPress, you might find the following core concepts in the next chapter very help‐
ful. We will cover more of the various built-in functions and methods used to interact

Extending WordPress | 55

www.it-ebooks.info

http://www.it-ebooks.info/

with WordPress data throughout the book. Chapter 3 covers the WordPress Plugin API,
including some of the key features of WordPress that make extending it easy, powerful,
and consistent!

56 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Leveraging WordPress Plugins

Plugins are awesome! If you didn’t know, now you know! Plugins can help you deploy
a full-blown web application with little to no knowledge of actual code. Whether you
are using a free plugin, premium plugin, or building your own, plugins can extend
WordPress to give you the functionality your application requires.

As we mentioned earlier, the great advantage of open source software is that members
of the community are invested in improving WordPress and often build plugins to
achieve a desired feature. The definition of a plugin provided in the Wordpress codex
is, “a program, or a set of one or more functions, written in the PHP scripting language,
that adds a specific set of features or services to the WordPress weblog, which can be
seamlessly integrated with the weblog using access points and methods provided by the
WordPress Plugin Application Program Interface (API).” Plugins allow you to turn your
site into anything you can think of, from a basic blog to an ecommerce site to a social
network.

There are a couple of plugins that come standard with any new WordPress install: Hello
Dolly and Akismet. If you didn’t know, the Hello Dolly plugin adds a random lyric from
the song “Hello Dolly” by Louis Armstrong to the top of your dashboard on each page
load. It’s not useful, but is a good way to see how to structure your own plugins. The
Akismet plugin integrates with Akismet.com to auotmatically filter out spam comments
from your blog. While Hello Dolly is useless outside of its educational value, Akismet
is downright necessary on any site with commenting turned on. You always have the
ability to deactivate these plugins or delete them altogether if you do not see any use for
them on your site.

There are over 26,000 plugins available that can be accessed through the official Word‐
Press plugin repository. Not all plugins can be found in the repository, so you can always
do a search on the Internet for whatever functionality you are looking for. Many plugin
creators have their work available for download through their personal or business sites
and many of these are available for a fee. There are also premium plugins, which are

57

www.it-ebooks.info

http://wordpress.org/extend/plugins/
http://wordpress.org/extend/plugins/
http://www.it-ebooks.info/

plugins that you have to pay to use. Similar to mobile apps, there is sometimes a scaled-
down version of the plugin available for free and then a more involved version available
for a fee. Most premium plugins also offer developer licenses. This allows developers
that may be working on building multiple sites to pay one price for the plugin files and
then install them on multiple WordPress installs.

The GPLv2 License
No matter how you purchase or obtain a WordPress plugin, all WordPress plugins must
use the GPLv2 code license, which states that if the source code is distributed (made
available or sold online, etc.), then you can do anything you want to with the code as
long as any derivative work retains the GPLv2 license. Some themes and plugins may
use a split license, meaning the HTML, CSS, JavaScript, and images are distributed under
a different license than the PHP files. Some themes and plugins do not mention the
GPLv2 license or flat out deny it applies. There is a little bit of legal merit to their claims,
but the authority figures in the WordPress.org community (namely Matt Mullenweg)
state that all themes and plugins must be GPL compatible. Our stance is that if you want
to do business in the WordPress community, you should follow their rules.

Overall, plugins are a great way to add enhanced functionality to your website without
having to change any of the core WordPress files. If you are looking for a specific feature,
you should first do a search to make sure that plugin does not already exist for that
functionality. If not, you then have two options: you can choose to download and modify
an existing plugin or build a new one from scratch.

Installing WordPress Plugins
To install a WordPress plugin, simply log in to the WordPress admin dashboard of your
site, also know as the backend. Click on the Plugins section, as shown in Figure 3-1. You
will then have the option to search the WordPress plugin repository or upload one if
you have already downloaded a plugin from the repository or another source. Once you
have completed your search and found a plugin you are interested in, click to install the
plugin. Once the plugin is installed, you will then have the option to activate it. If you
do not activate the plugin, it will remain deactivated in the “Plugins → Installed Plugins”
page of your site. Also, please keep in mind that many plugins will need to be configured
once activated, and you will usually see a message appear in the dashboard telling you
to do so.

58 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-1. Add a new plugin

If you downloaded a plugin from a source other than the official Wordpress plugin
repository, you should have a ZIP file of the plugin files. To upload the plugin to your
site, you will need to click on Upload in the Plugins section of the dashboard and then
choose that ZIP file from wherever you have it saved on your computer. You will be
given the choice to activate the plugin if you wish to do so at that time.

Building Your Own Plugin
The true power of WordPress for app developers is that you can make your own custom
plugin to extend WordPress anyway you see fit.

To create a plugin, first create a new folder in wp-content/plugins called my-plugin and
make a PHP file in that folder called my-plugin.php. In my-plugin.php, write the fol‐
lowing code, and feel free to replace any of the values:

<?php
/*
* Plugin Name: My Plugin
* Plugin URI: http://webdevstudios.com/
* Description: This is my plugin description.
* Author: messenlehner, webdevstudios, strangerstudios

Building Your Own Plugin | 59

www.it-ebooks.info

http://www.it-ebooks.info/

* Version: 1.0.0
* Author URI: http://bwawwp.com
* License: GPLv2 or later
*/
?>

Save your my-plugin.php file. Congratulations, you are a WordPress plugin author! Even
though your plugin doesn’t do anything yet, you should be able to see it in /wp-admin/
plugins.php and activate it. Go ahead and activate it.

Let’s make your plugin actually do something. Let’s add something to the footer of your
WordPress install. Copy and save the following code after the plugin information:

<?php
function my_plugin_wp_footer() {
 echo 'I read Building Web Apps with WordPress
 and now I am a WordPress Genius!';
}
add_action('wp_footer', 'my_plugin_wp_footer');
?>

If you go out to the frontend of your website (make sure you refresh), you should notice
a new message in the footer. Now you are off to the races, and you can customize this
basic plugin to do whatever you want. If you are already a PHP developer, start hacking
away! If you are new to PHP and WordPress, a good way to kickstart your skills is to
download and analyze the code in other plugins to see how they are doing what they
do.

We will be going over more code that you can use in any of the plugins that you build
throughout the book. This was just a very basic example to get you started.

File Structure for an App Plugin
When building a web app with WordPress, we recommend having one main app plugin
to store the core functionality for your app. On the theme side (covered in Chapter 4),
you will store the majority of your app’s frontend code in the active theme.

Some plugins only do one or two things, and one .php file is all you need to get things
done. Your main app plugin is probably going to be much more complicated, with asset
files (CSS, images, and templates), included libraries, class files, and potentially thou‐
sands of lines of code you will want to organize into more than one file.

Here is our proposed file structure for an app’s main plugin, using the SchoolPress plugin
as an example. Not all of these folders and files may be necessary. We add them to a
plugin as needed:

• /plugins/schoolpress/adminpages/
• /plugins/schoolpress/classes/

60 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

• /plugins/schoolpress/css/
• /plugins/schoolpress/css/admin.css
• /plugins/schoolpress/css/frontend.css
• /plugins/schoolpress/js/
• /plugins/schoolpress/images/
• /plugins/schoolpress/includes/
• /plugins/schoolpress/includes/lib/
• /plugins/schoolpress/includes/functions.php
• /plugins/schoolpress/pages/
• /plugins/schoolpress/services/
• /plugins/schoolpress/scheduled/
• /plugins/schoolpress/schoolpress.php

/adminpages/
Place the .php files for any dashboard page you add through your plugin in the /admin‐
pages/ directory. For example, here is how you would add a dashboard page and load it
out of your /adminpages/ directory:

<?php
// add a SchoolPress menu with reports page
function sp_admin_menu() {
 add_menu_page(
 'SchoolPress',
 'SchoolPress',
 'manage_options',
 'sp_reports',
 'sp_reports_page'
);
}
add_action('admin_menu', 'sp_admin_menu');

// function to load admin page
function sp_reports_page() {
 require_once dirname(__FILE__) . "/adminpages/reports.php";
}
?>

/classes/
Place any PHP class definitions in the /classes/ directory. In general, each file in this
directory should include just one class definition. The class files should have names like
class.ClassName.php, where ClassName is the name given to the class.

File Structure for an App Plugin | 61

www.it-ebooks.info

http://www.it-ebooks.info/

/css/
Place any CSS files used specifically for your plugin in the /css/ directory. Split your CSS
into admin.css and frontend.css files depending on whether the CSS affects the Word‐
Press dashboard or something on the frontend.

Any CSS libraries needed, for example, to support an included JavaScript library, can
also be placed in this folder.

Here is some code to enqueue the admin.css and frontend.css styles from the plugin’s
CSS folder:

<?php
function sp_load_styles() {
 if (is_admin()) {
 wp_enqueue_style(
 'schoolpress-plugin-admin',
 plugins_url('css/admin.css', __FILE__),
 array(),
 SCHOOLPRESS_VERSION,
 'screen'
);
 } else {
 wp_enqueue_style(
 'schoolpress-plugin-frontend',
 plugins_url('css/frontend.css', __FILE__),
 array(),
 SCHOOLPRESS_VERSION,
 'screen'
);
 }
}
add_action('init', 'sp_load_styles');
?>

Any CSS that affects components of the WordPress dashboard should go into the ad‐
min.css file. Any CSS that affects the frontend of the site should go into frontend.css, but
be careful when adding CSS rules to the frontend.css file. When adding frontend styles
to your plugin files, ask yourself first if the CSS rules you are writing should go into the
app’s theme instead, since the majority of your frontend-style code should be handed
by your theme.

The kind of CSS that would go into the plugin’s CSS file are generally layout styles that
would be appropriate no matter what theme was loaded. Imagine that your site had no
theme or CSS loaded at all. What would be the bare minimum CSS needed to have the
HTML generated by your plugin make sense? Expect the theme to build on and override
that.

62 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

For example, your plugin’s frontend.css should never include styles for coloring. How‐
ever, a style saying an avatar is 64 px wide and floated left could be appropriate.

/js/
Place any JavaScript files needed by your plugin in this folder. Again, you can split things
into an admin.js and frontend.js file depending on where the JS is needed.

Any third-party JavaScript libraries used may also be placed in this folder. Generally,
they should be added to a subfolder of the /js/ directory.

Here is some code to load admin.js and frontend.js files from your plugin’s /js/ directory:

<?php
function sp_load_scripts() {
 if (is_admin()) {
 wp_enqueue_script(
 'schoolpress-plugin-admin',
 plugins_url('js/admin.js', __FILE__),
 array('jquery'),
 SCHOOLPRESS_VERSION
);
 } else {
 wp_enqueue_script(
 'schoolpress-plugin-frontend',
 plugins_url('js/frontend.js', __FILE__),
 array('jquery'),
 SCHOOLPRESS_VERSION
);
 }
}
add_action('init', 'sp_load_scripts');
?>

Just like with stylesheets, it can be difficult to determine if some bit of JavaScript should
be included in the plugin’s JavaScript file or the theme’s JavaScript file. In general, JS files
that support the theme (e.g., slider effects and menu effects) should go in the theme,
and JS files that support the plugin (e.g., AJAX code) should go in the plugin. In practice,
however, you will find your plugin using JS defined in your theme and vice versa.

/images/
Place any images needed by your plugin in the /images/ directory.

/includes/
The /includes/ directory is a kind of catchall for any .php files your plugin needs. The
only .php file in your plugin’s root folder should be the main plugin file school‐

File Structure for an App Plugin | 63

www.it-ebooks.info

http://www.it-ebooks.info/

press.php. All other .php files should go in one of the other folders; and if none are more
appropriate, you either need to make another folder or place it in the /includes/ folder.

It is standard procedure to add a functions.php or helpers.php file to include any helper
PHP code used by your plugin. This file should include any small scripts that don’t have
a central role in the logic or functionality of your plugin but are needed to support it.
Examples include functions to trim text, generate random strings, or other framework-
like functions that aren’t already available through a core WordPress function.

/includes/lib/
Place any third-party libraries that you need for your app into the /includes/lib/ direc‐
tory.

/pages/
Place any .php code related to frontend pages added by your plugin in the /pages/
directory. Frontend pages are typically added through shortcodes that you would embed
into a standard WordPress page to show the content you want.

The following code snippet illustrates how to create a shortcode that can be placed on
a WordPress page to generate a page from your plugin. The preheader here is a chunk
of code to run before the wp_head() function loads, and thus before any HTML headers
or code are sent to the browser. The shortcode function further down outputs HTML
to the actual page at the place of the shortcode.

Place this code in /plugins/{your plugin folder}/pages/stub.php, then include it (typically
using the require_once() function) from your main plugin file. Then add the shortcode
[sp_stub] to a page of your WordPress site.

<?php
// preheader
function sp_stub_preheader() {
 if (!is_admin()) {
 global $post, $current_user;
 if (!empty($post->post_content) && strpos
 ($post->post_content, "[sp_stub]") !== false) {
 /*
 Put your preheader code here.
 */
 }
 }
}
add_action('wp', 'sp_stub_preheader', 1);

// shortcode [sp_stub]
function sp_stub_shortcode() {
 ob_start();

64 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

 ?>
 Place your HTML/etc code here.
 <?php
 $temp_content = ob_get_contents();
 ob_end_clean();
 return $temp_content;
}
add_shortcode('sp_stub', 'sp_stub_shortcode');
?>

For the preheader code, we first check that the page is being loaded from outside the
admin using !is_admin(); otherwise this code might run when editing the post in the
dashboard. Then we look for the string [sp_stub] in the content of the $post global.
This function is hooked to the wp hook, which runs after WordPress sets up the $post
global for the current page, but before any headers or HTML is output.

The preheader code can be used to check permissions, process form submissions, or
prep any code needed for the page. In an MVC model, this would be your model
and/or controller code. Because this code is run before any headers are output, you can
still safely redirect users to another page. For example, you can wp_redirect() them to
the login or signup page if they don’t have access to view the page.

In the shortcode function, we use ob_start(), ob_get_contents(), and
ob_end_clean(), which are PHP functions used to buffer output to a variable. Using
this code means that the code between the preceding ?> and <?php tags is placed into
the $temp_content variable instead of output at the time of processing (which would
have it echoed out above the <html> tag of your site). This isn’t necessary; you could
just define a $temp_content function and use PHP to add to that string. Using output
buffering allows us to code in a more template-like way, mixing HTML and PHP, which
is easier to read.

/services/
Place any .php code for AJAX calls in the /services/ directory.

/scheduled/
Place any .php code that is related to cron jobs or code that is meant to be run at scheduled
intervals here.

/schoolpress.php
This is the main plugin file. For small plugins, this may be the only file needed. For large
plugins, the main plugin file will only contain include statements, constant definitions,
and some comments about which other files contain the code you might be looking for.

File Structure for an App Plugin | 65

www.it-ebooks.info

http://www.it-ebooks.info/

1. In the context of the GPL, distribution means selling your source code or offering it for download on a website
like the WordPress.org plugin repository. Code that you personally install for someone does not need to
inherit the GPL license.

Add-Ons to Existing Plugins
Any plugin or piece of code that runs on WordPress and is distributed1 is supposed to
be open source and licensed under the GPL. You could take any plugin in the repository,
change the name, and release it as a totally new plugin. Doing this could get you into a
bar fight, so we suggest that you don’t “fork” plugins like this unless you are also planning
to improve on and maintain the new plugin.

What if you found a plugin that does 95% of what you need, but it needs a couple lines
of code to get to 100%? Consider making an add-on for the plugin.

Most well-developed plugins will have their own hooks and filters, which can allow
other developers to create an add-on plugin. Just as you would build a plugin to use
hooks and filters in WordPress, you can build a plugin to use hooks and filters in other
plugins. In some cases, you may need to hack the original plugin to do what you want,
which is totally cool, but maybe you can suggest adding some hooks or filters where
you need them to the original plugin author.

Use Cases and Examples
So what should we build with the free and premium plugins we just mentioned? Let’s
add a community around WordPress: SchoolPress.

Each teacher will be the administrator of her own group and can easily add students to
it. Students can engage in the group activity, or the “Class Wall” as we will call it. With
BuddyPress, students can add one another as friends, follow their friends or teachers,
and private message their teachers if they have questions.

With BadgeOS and the BadgeOS Community add-on, we can allow teachers to create
fun reward badges for their students to earn as they complete various homework as‐
signments and projects that they can share with their friends on the social networks that
they are already on.

We can use Gravity Forms to make a really easy way for students to submit their home‐
work.

The WordPress Loop
The great and powerful WordPress Loop is what makes WordPress display its posts.
Depending on what theme template file is being called on when navigating your website,

66 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress queries the database and retrieves the posts that need to be returned to the
end user and then loops through them.

Most correctly built WordPress themes usually have the following files that contain the
WordPress loop:

• index.php
• archive.php
• category.php
• tag.php
• single.php
• page.php

If you open up any of these files, will contain code that may look something like this:

<?php
if (have_posts()) {
 while (have_posts()) {
 the_post();
 // show each post title, excerpt/content , featured image and more
 the_title('<h2>', '</h2>');
 the_content();
 }
} else {
 // show a message like sorry no posts!
}
?>

The have_posts() function checks to see if there are any posts that need to be looped,
and if so, the while loop is initiated. The the_post() function called first in each iteration
of the loop sets up the post with all of its global variables so post-specific data can be
displayed to the end user.

WordPress Global Variables
Global variables are variables that can be defined and then used anywhere after in the
rest of your code. WordPress has a few built-in global variables that can really help you
save a lot of time and resources when writing code.

If you wanted to see a full list of every global variable available to you, you can run the
following code:

<?php
echo '<pre>';
print_r($GLOBALS);
echo '</pre>';
?>

Use Cases and Examples | 67

www.it-ebooks.info

http://www.it-ebooks.info/

2. It would take a synced entry in both the wp_usermeta and wp_postmeta tables to provide the same lookup
ability a single wp_schoolpress_assignment_submissions table offers.

To access a global variable in any custom code you are writing, use code like this:

<?php
global $global_variable_name;
?>

Some global variables are only made available to you depending on where you are in
WordPress. Below is a short list of some of the more popular global variables:

• $post—An object that contains all of the post data from the wp_posts table for the
current post that you are on within the WordPress loop.

• $authordata—An object with all of the author data of the current post that you are
on within the WordPress loop.

$wpdb

The $wpdb class is used to interact with the database directly. Once globalized, you can
use $wpdb in custom functionality to select, update, insert, and delete database records.
If you are new to WordPress and aren’t familiar with all of the functions to push and
pull from the database, $wpdb is going to be your best friend.

Queries using $wpdb are also useful when you need to manage custom tables required
by your app or perform a complicated query (perhaps joining many tables) faster than
the core WordPress functions would run on their own. Please don’t assume that the
built-in WordPress functions for querying the database are slow. Unless you know ex‐
actly what you are doing, you’ll want to use the built-in functions for getting posts, users,
and metadata. The WordPress core is smart about optimizing queries and caching the
results from these calls, which will work well across all of the plugins you are running.
However, in certain situations, you can shave a bit of time by rolling your own query.
A few examples like this are covered in Chapter 16.

Using custom DB tables
In SchoolPress, we store the relationship of student submissions to assignments in a
custom table. This keeps the core WordPress tables a bit cleaner2 and allows us to easily
query for things like “select all of Isaac’s assignments.”

To add our table to the database, we need to write up the SQL for the CREATE TABLE
command and query it against the WordPress database. You can use either the $wpdb-
>query() method or the dbDelta() function in the WordPress core.

68 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

There are a few things we need to do to keep track of our custom tables. We want to
store a db_version for our app plugin so we know what version of the database schema
we are working with in case it updates between versions. We can also check the version
so we only run the setup SQL once for each version. Another common practice is to
store your custom table name as a property of $wpdb to make querying it a bit easier
later.

Example 3-1 shows a little bit of our database setup function for the SchoolPress app:

Example 3-1. Database setup for SchoolPress
<?php
// setup the database for the SchoolPress app
function sp_setupDB() {
 global $wpdb;

 // shortcuts for SchoolPress DB tables
 $wpdb->schoolpress_assignment_submissions = $wpdb->prefix .
 'schoolpress_assignment_submissions';

 $db_version = get_option('sp_db_version', 0);

 // create tables on new installs
 if (empty($db_version)) {
 global $wpdb;

 $sqlQuery = "
 CREATE TABLE '" . $wpdb->schoolpress_assignment_submissions . "' (
 `assignment_id` bigint(11) unsigned NOT NULL,
 `submission_id` bigint(11) unsigned NOT NULL,
 UNIQUE KEY `assignment_submission` (`assignment_id`,`submission_id`),
 UNIQUE KEY `submission_assignment` (`submission_id`,`assignment_id`)
)
 ";

 require_once ABSPATH . 'wp-admin/includes/upgrade.php';
 dbDelta($sqlQuery);

 $db_version = '1.0';
 update_option('sp_db_version', '1.0');
 }
}
add_action('init', 'sp_dbSetup', 0);
?>

The sp_dbSetup() function is run early in init (priority 0) so the table shortcuts are
available to any other code you have running. You can’t always assume a wp_ prefix, so
the $wpdb->prefix property is used to get the database prefix for the WordPress install.

A DB version for the SchoolPress app is stored in the WordPress options table. We get
the value out of options, and if it is empty, we run code to create our custom tables. The

Use Cases and Examples | 69

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE SQL statement here is pretty standard. You should always try to run
these commands directly on the MySQL database before pasting them into your plugin
code to make sure they work.

We use the dbDelta() function to create the database table. This function will create a
new table if it doesn’t exist. Or if a table with the same name already exists, it will figure
out the correct ALTER TABLE query to get the old table to match the new schema.

To use dbDelta(), you must be sure to include the wp-admin/includes/upgrade.php file
since that file is only loaded when needed. Then pass dbDelta() the SQL for a CREATE
TABLE query. Your SQL must be in a specific format a little more strict than the general
MySQL format.

From the WordPress Codex on Creating Tables with Plugins:

1. You must put each field on its own line in your SQL statement.
2. You must have two spaces between the words PRIMARY KEY and the definition

of your primary key.
3. You must use the keyword KEY rather than its synonym INDEX, and you must

include at least one KEY.
4. You must not use any apostrophes or backticks around field names.

Running queries. Using dbDelta() is preferred when creating tables because it will au‐
tomatically update older versions of your tables, but you can also run the CREATE
TABLE query using $wpdb->query($sqlQuery);.

You can run any valid SQL statement using the $wpdb->query() method. The query()
method sets a lot of properties on the $wpdb object that are useful for debugging or just
keeping track of your queries:

• $wpdb->result will contain the raw result from your SQL query.
• $wpdb->num_queries is incremented each time a query is run.
• $wpdb->last_query will contain the last SQL query run.
• $wpdb->last_error will contain a string with the last SQL error generated if there

was one.
• $wpdb->insert_id will contain the ID created from the last successful INSERT

query.
• $wpdb->rows_affected is set to the number of affected rows.
• $wpdb->num_rows is set to the number of rows in a result for a SELECT query.

70 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://bit.ly/create-table
http://www.it-ebooks.info/

• $wpdb->last_result will contain an array of row objects generated through the
mysql_fetch_object() PHP function.

The return value of the $wpdb->query() method is based on the top of query run and
if the query was successful or not:

• False is returned if the query failed. You can test for this using code like if($wpdb-
>query($query) === false) { wp_die(“it failed!”); }.

• The raw MySQL result is returned on CREATE, ALTER, TRUNCATE, and DROP
queries.

• The number of rows affected is returned for INSERT, UPDATE, DELETE, and
REPLACE queries.

• The number of rows returned is returned for SELECT queries.

Escaping in DB queries

It should be noted that values passed into the query() method are not escaped auto‐
matically. Therefore, you will always need to escape untrusted input when using the
query() method directly.

There are two main ways of escaping values used in your SQL queries: you can wrap
your variables in the esc_sql() function (see Example 3-2) or you can use the $wpdb-
>prepare() method to build your query.

Example 3-2. Using the esc_sql() function
global $wpdb;
$user_query = $_REQUEST[‘uq’];

$sqlQuery = “SELECT user_login FROM $wpdb->users WHERE
user_login LIKE ‘%” . esc_sql($user_query) . “%’ OR
user_email LIKE ‘%” . esc_sql($user_query) . “%’ OR
display_name LIKE ‘%” . esc_sql($user_query) . “%’
”;
$user_logins = $wpdb->get_col($sqlQuery);

if(!empty($user_logins))
{
 echo “”;
foreach($user_logins as $user_login)
 {
 echo “$user_login”;
}
echo “”;
}

Use Cases and Examples | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, you could create the query using the prepare() method, which functions
similarly to the sprintf() and printf() functions in PHP. This method of the $wpdb
class located in wp-includes/wp-db.php accepts two or more parameters:

• $query—A string of your custom SQL statement with placeholders for each dy‐
namic value.

• $args—One or more additional parameters to be used to replace the placeholders
in your SQL statement.

The following directives can be used in the SQL statement string:

• %d (integer)
• %f (float)
• %s (string)
• %% (literal percentage sign–-no argument needed)

The directives %d, %f, and %s should be left unquoted in the SQL statement, and each
placeholder used needs to have a corresponding argument passed in for it. Literals (%)
as part of the query must be properly written as %%:

$sqlQuery = $wpdb->prepare(“SELECT user_login FROM $wpdb->users WHERE
user_login LIKE %%%s%% OR
user_email LIKE %%%s%% OR
display_name LIKE %%%s%%”, $user_query, $user_query, $user_query);
$user_logins = $wpdb->get_col($sqlQuery);

If you use $wpdb->prepare() without including the $args parame‐
ter, you will get a PHP warning message: “Missing argument 2 for
wpdb::prepare()“. If your SQL doesn’t use any placeholder values,
you don’t need to use prepare().

Holy percent sign, Batman! The % is used in SQL as a wildcard in SELECT statements
when using the LIKE keyword. So if you searched for user_login LIKE %coleman%, it
would return users with user logins like “jcoleman” and “jasoncoleman” and “cole‐
man1982.” To keep these literal % signs in place with the prepare() method, we need
to double them up to %%, which is translated into just one % in the final query.

The other % in there is used with %s, which is the placeholder where our $user_query
parameter is going to be swapped in after being escaped.

You may have noticed we used the $wpdb->get_col() method in the previous code
segment. WordPress offers many useful methods on the $wpdb object to SELECTs, IN‐
SERTs, and other common queries in MySQL.

72 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT queries with $wpdb

The WordPress $wpdb object has a few useful methods for selecting arrays, objects, rows,
columns, or even single values out of the MySQL database using SQL queries.

$wpdb→get_results($query, $output_type) will run your query and return the
last_results array, including all of the rows from your SQL query in the output type
specified. By default, the result will be a “numerically indexed array of row objects.”
Here’s the full list of output types from the WordPress Codex:
OBJECT

Result will be output as a numerically indexed array of row objects.

OBJECT_K
Result will be output as an associative array of row objects, using the first column’s
values as keys (duplicates will be discarded).

ARRAY_A
Result will be output as an numerically indexed array of associative arrays, using
column names as keys.

ARRAY_N
Result will be output as a numerically indexed array of numerically indexed arrays.

The following code helps show how to use the array returned by $wpdb-

>get_results() when using the OBJECT output type:

<?php
global $wpdb;
$sqlQuery = "SELECT * FROM $wpdb->posts
 WHERE post_type = 'assignment'
 AND post_status = 'publish' LIMIT 10";
$assignments = $wpdb->get_results($sqlQuery);

// rows are stored in an array, use foreach to loop through them
foreach ($assignments as $assignment) {
// each item is an object with property names equal to the SQL column names?>
<h3><?php echo $assignment->post_title;?></h3>
<?php echo apply_filters("the_content", $assignment->post_content);?>
<?php
}
?>

$wpdb→get_col($query, $collumn_offset = 0) will return an array of the values in
the first column of the MySQL results. The $collumn_offset parameter can be used to
grab other columns from the results (0 is the first, 1 is the second, and so on).

This function is most commonly used to grab IDs from a database table to be used in
another function call or DB query:

Use Cases and Examples | 73

www.it-ebooks.info

http://www.it-ebooks.info/

<?php
global $wpdb;
$sqlQuery = "SELECT ID FROM $wpdb->posts
 WHERE post_type = 'assignment'
 AND post_status = 'publish'
 LIMIT 10";
// getting IDs
$assignment_ids = $wpdb->get_col($sqlQuery);

// result is an array, loop through them
foreach ($assignment_ids as $assignment_id) {
 // we have the id, we can use get_post to get more data
 $assignment = get_post($assignment_id);
 ?>
 <h3><?php echo $assignment->post_title;?></h3>
 <?php echo apply_filters("the_content", $assignment->post_content);?>
 <?php
}
?>

Note that we’re putting that global $wpdb; line in most of our examples here to rein‐
force the point that you need to make sure that $wpdb is in scope before calling one of
its methods. In practice, this line is usually at the top of the function or file you are
working within.

$wpdb→get_row($query, $output_type, $row_offset) is used to get just one row
from a result. Instead of getting an array of results, you will just get the first object (or
array if the $output_type is specified) from the result set.

You can use the $row_offset parameter to grab a different row from the results (0 is
the first, 1 is the second, and so on).

Insert, replace, and update. $wpdb→insert($table, $data, $format) can be used to
insert data into the database. Rather than building your own INSERT query, you simply
pass the table name and an associative array containing the row data and WordPress
will build the query and escape it for you. The keys of your $data array must map to
column names in the table. The values in the array are the values to insert into the table
row:

<?php
// processing new submissions for assignments
global $wpdb, $current_user;

// create submission
$assignment_id = intval($_REQUEST['assignment_id']);
$submission_id = wp_insert_post(
 array(
 'post_type' => 'submission',
 'post_author' => $current_user->ID,

74 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

 'post_title' => sanitize_title($_REQUEST['title']),
 'post_content' => sanitize_text_field($_POST['submission'])
)
);

// connect the submission to the assignment
$wpdb->insert(
 $wpdb->schoolpress_assignment_submissions,
 array("assignment_id"=>$assignment_id, "submission_id"=>$submission_id),
 array('%d', '%d')
);

/*
 This insert call will generate a SQL query like:
 INSERT INTO
 'wp_schoolpress_assignment_submissions'

 ('assignment_id','submission_id' VALUES (101,10)
*/
?>

In the previous code, we use wp_insert_post() to create the submission then use
$wpdb->insert() to insert a row into our custom table connecting assignments with
submissions.

We pass an array of formats to the third parameter to tell the method to format the data
as integers when constructing the SQL query. The available formats are %s for strings,
%d for integers, and %f for floats. If no format is specified, all data will be formatted as
a string. In most cases, MySQL will properly cast your string into the format needed to
store it in the actual table.

To relate two posts like this, we could also simply put the assignment_id into the
post_parent column of the wp_posts table. This is adequate to create a parent/child
relationship. However, if you want to do a many-to-many relationship (e.g., if you can
post the same submission to multiple assignments), you need a separate table or some
other way to connect a post to many other posts.

$wpdb→replace($table, $data, $format) is similar to the $wpdb->insert() method.
The $wpdb->replace() method will literally generate the same exact SQL query as
$wpdb->insert() but uses the MySQL REPLACE command instead of INSERT, which
will override any row with the same keys as the $data passed in.

$wpdb→update($table, $data, $where, $format = null, $where_format =

null) can be used to update rows in a database table. Rather than building your own
UPDATE query, you simply pass the table and an associative array containing the up‐
dated columns and new data along with an associative array $where containing the fields
to check against in the WHERE clause and WordPress will build the query and escape
the UPDATE query for you.

Use Cases and Examples | 75

www.it-ebooks.info

http://www.it-ebooks.info/

The $where and $where_format parameters work the same as the $data and $format
arrays, respectively.

The WHERE clause generated by the update() method will check that the columns are
equal to the values passed and those checks are combined together by AND conditions.

The update() method is particularly useful in that you can update any number of fields
in an table row using the same function. Here is some code that could be used to update
orders in an ecommerce plugin:

<?php
global $wpdb;
// just update the status
$wpdb->update(
 'ecommerce_orders', //table name
 array('status' => 'paid'), //data fields
 array('id' => $order_id) //where fields
);

// update more data about the order
$wpdb->update(
 'ecommerce_orders', //table name
 array('status' => 'pending', //data fields
 'subtotal' => '100.00',
 'tax' => '6.00',
 'total' => '106.00'
),
 array('id' => $order_id) //where fields
);
?>

• $wp_query—An object of the WP_Query class that can show you all of the post
content returned by WordPress for any given page that you are on. We will talk
more about the WP_Query class and its methods in the next chapter.

• $current_user—An object of all of the data associated with the currently logged-in
user. Not only does this object return all of the data for the current user from the
wp_users table, but it will also tell you the roles and capabilities of the current user:

<?php
//welcome the logged-in user
global $current_user;
if (!empty($current_user->ID)) {
 echo 'Howdy, ' . $current_user->display_name;
}
?>

When writing your own code to run on WordPress, you can define and use your own
global variables if it makes sense. Global variables can save you the hassle of rewriting

76 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

code and recalling functions because once they are defined, you can use them over and
over again.

Action Hooks
WordPress developers hook for a living! Hooks are great and they make adding func‐
tionality into WordPress plugins and themes simple and easy. Any place an action hook,
or technically a do_action() function, exists in code running on WordPress, you can
insert your own code by calling the add_action() function and passing in the action
hook name and your custom function with the code you want to run:

• do_action($tag, $arg);

— $tag—The name of the action hook being executed.
— $arg—One or more additional arguments that will get passed through to the

function called from the add_action() function referencing this do_action()
function. Say what? Keep reading…

You can create your own hooks in a theme or plugin by adding your own do_ac
tion() functions. However, most of the time you will be using established hooks in the
WordPress core or other plugins. For example, let’s say we wanted to check if a user was
logged in when WordPress first loads up but before any output is displayed to the
browser. We can use the init hook:

<?php
add_action('init', 'my_user_check');

function my_user_check() {
 if (is_user_logged_in()) {
 // do something because a user is logged in
 }
}
?>

So what just happened? In the core of WordPress, there is an action hook, do_ac
tion(init), and we are calling a function called “my_user_check” from the add_ac
tion() function. At whatever point in time the code is being executed, when it gets to
the init action hook, it will then run our custom my_user_check function to do what‐
ever we want before continuing on.

Check out WordPress’s reference page for a list of the most used WordPress hooks.

Filters
Filters are kind of like action hooks in the sense that you can tap into them wherever
they exist in WordPress. However, instead of inserting your own code where the hook

Use Cases and Examples | 77

www.it-ebooks.info

http://bit.ly/plugin-api
http://www.it-ebooks.info/

or do_action() exists, you are filtering the returned value of existing functions that are
using the apply_filters() function in WordPress core, plugins, and/or themes. In
other words, by utilizing filters, you can hijack content before it is inserted into the
database or before it is displayed to the browser as HTML:

• apply_filters($tag, $value, $var);

— $tag—The name of the filter hook.
— $value—The value that the filter can be applied on.
— $var—Any additional variables, such as a string or an array, passed into the filter

function.

If you search the core WordPress files for apply_filters you will find that the ap
ply_filters() function is called all over the place, and like action hooks, the ap
ply_filters() function can also be added to and called from any theme or plugin.
Anywhere in code running on your WordPress site that you see the apply_filters()
function being called, you can filter the value being returned by that function. For our
example, we are going to filter the title of all posts before they are displayed to the
browser. We can hook into any existing filters using the add_filter() function:

• add_filter($tag, $function, $priority, $accepted_args);

— $tag—The name of the filter hook you want to filter. This should match the $tag
parameter of the apply_filters() function call you want to filter the results
for.

— $function—The name of the custom function used to actually filter the results.
— $priority—This number sets the priority in which your add_filter will run

compared to other places in the code that might be referencing the same filter
hook tag. By default, this value is 10.

— $accepted_args—You can set the number of parameters that your custom func‐
tion that handles the filtering can except. The default is 1, which is the $value
parameter of the apply_filters function.

OK, so how would real code for this look? Let’s start by adding a filter to alter the title
of any post returned to the browser. We know of a filter hook for the_title that looks
like this:

apply_filters('the_title', $title, $id);

$title is the title of the post and $id is the ID of the post:

<?php
add_filter('the_title', 'my_filtered_title', 10, 2);

78 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

function my_filtered_title($value, $id) {
 $value = '[' . $value . ']';
 return $value;
}
?>

The preceding code should wrap any post titles in brackets. If your post title was “hello
world,” it would now read “[hello world].” Note that we didn’t use the $id in our custom
function. If we wanted to, we could have only applied the brackets to specific post IDs.

While add_action() is meant to be used with do_action() hooks
and add_filter() is meant to be used with apply_filters() hooks,
the functions work the same way and are interchangeable. For read‐
ability, it is still a good idea to use the proper function depending on
whether you intend to return a filtered result or just perform some
code at a specific time.

Free Plugins
Let’s talk about some useful free plugins that can help extend your web application.
There are plugins that exist for almost every purpose. In the event that you can’t find
the exact functionality you are looking for in an existing plugin, you could always modify
an existing plugin (open source right) or create an entirely new one if you are up for the
challenge.

All in One SEO Pack
This is a great plugin to use if you are concerned about SEO (search engine optimiza‐
tion). This plugin was created by Semper Fi Web Design and once installed, it auto‐
matically optimizes your site for search engines. It also adds custom meta fields to each
page and post that then allow you to add in custom titles as well as descriptions and
keywords. There are pro or premium versions of the plugin that extend the functionality
to allow for customization of search engine settings for each individual post or page as
well as the option to set sitewide defaults in WordPress.

BadgeOS
This plugin can transform any website into a platform for rewarding members ach‐
ievements based on their activities. It allows the site admin to create different achieve‐
ment types and award the members sharable badges once they complete all the re‐
quirements to earn that particular achievement or achievements. Badges are Mozilla
OBI compatible and sharable via Credly.com.

Free Plugins | 79

www.it-ebooks.info

http://bit.ly/1-seo-pack
http://bit.ly/badgeOS
http://www.it-ebooks.info/

Custom Post Type UI
This is a very powerful plugin for building a web application. Custom Post Type UI
allows you to create your own custom post types and taxonomies without touching any
lines of code. We will be going over what custom post types and taxonomies are and
how to register them in the next chapter, but you can use this plugin to get around
writing your own code.

Posts 2 Posts
This is another very powerful plugin for building a web application. This plugin allows
you to create many-to-many relationships between posts, pages, and custom post types
as well as many-to-many relationships between posts and users.

For an example, you could use P2P to make connections between custom post types for
schools, teachers, and subjects. A school could have multiple teachers, and each teacher
could be tied to one or more subjects.

P2P provides intuitive settings, feature-rich widgets, and an easy-to-use meta box at‐
tached to any post add/edit page for making new connections.

Most of the time, custom plugin developers should avoid creating additional database
tables unless it absolutely makes sense. If we wanted to connect posts to other posts, we
could store an array of post IDs in a custom field of another post, but this can become
inefficient in a large scale application. P2P creates its own database tables for storing
the relationships between posts more efficiently.

Table 3-1. DB schema for wp_p2p table
Column Type Collation Null Default Extra

p2p_id bigint(20) No None AUTO_INCREMENT

p2p_from bigint(20) No None

p2p_to bigint(20) No None

p2p_type varchar(44) utf8_general_ci No

Table 3-2. DB schema for wp_p2pmeta table
Column Type Collation Null Default Extra

meta_id bigint(20) No None AUTO_INCREMENT

p2p_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

For more information on this plugin, make sure to check out the wiki on GitHub.

80 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://bit.ly/custom-ui
http://bit.ly/posts2posts
http://bit.ly/p2p-wiki
http://www.it-ebooks.info/

Members
Members extends the control that you have over user roles and capabilities in your
site. It enables you to edit as well as create and delete user roles and capabilities. This
plugin also allows you to set permissions for different user roles to determine which
roles have the ability to add, edit, and/or delete various pieces of content. This is another
must-have plugin for building an extensible web application because you can completely
customize each user’s experience by defining and managing the roles and capabilities
he will have access to.

W3 Total Cache
Caching your content is a great idea for optimizing the performance of your website.
You can save a lot of processing time by displaying cached pages to the end user instead
of querying the database every time someone requests data. W3 Total Cache has a lot
of built-in features for managing what content gets cached and when the cache should
be cleared.

Premium Plugins
Although there are a lot of great free plugins out there, there are also some premium
plugins that are definitely worth the money. These plugins are usually available for
purchase for one-time use, and some also offer developer licences that allow you to
purchase the plugin for installation on multiple WordPress sites.

Gravity Forms
This plugin is an absolute must because it enables you to easily create custom contact
forms for your site. It is extremely easy to create a form using the visual form editor,
which allows you to drag and drop the fields you need into the form and reposition
them as needed. Standard fields are included as well as the option to create your own
custom fields. The forms are very flexible and can be set up as multiple page forms with
progress bars. Conditional fields allow you to show or hide fields based on the user’s
selections in previous fields. Another great feature of this plugin is the ability for the
forms, once completed, to be forwarded anywhere as chosen by the site admin in the
form settings. All in all, this plugin is extremely useful and flexible for anyone needing
to create a form on their site and easy to use for someone without coding knowledge.

Backup Buddy
The Backup Buddy plugin provides you with the opportunity to back up your entire
WordPress install for safekeeping, restoring, or moving your site. Backups can be
scheduled on a recurring basis, and the file can then be downloaded to your computer,
emailed to you, or sent off to the storage location of your choice, such as Dropbox or

Premium Plugins | 81

www.it-ebooks.info

http://bit.ly/members-wp
http://bit.ly/w3-cache
http://www.gravityforms.com/
http://bit.ly/backup-b
http://www.it-ebooks.info/

an FTP server. This plugin also features a restore option that will easily restore your
themes, widgets, and plugins. The plugin also allows you to easily move your site to a
new server or domain right from the WordPress dashboard, which comes in handy if
you work on a dev server and then move the sites over to a production environment
upon launch.

WP All Import
This plugin comes in handy if you are looking to import data into WordPress from
another source that is in either an XML or CSV file, which are two formats not routinely
accepted by WordPress. There is also a pro or premium version of the plugin available
for purchase that extends the functionality to allow you to import data into custom post
types as well as custom fields. The pro version also allows you to import images from a
URL and have them saved in the media library. Another helpful feature is the ability to
set up recurring imports that will periodically check a file for changes or updates and
then modify the corresponding post as needed.

Community Plugins
You can build a full-blown social network with WordPress and a few free plugins. Social
networks are great to bring a niche community together. If you have an active social
network, you will have lots of organic content being indexed by search engines. If you
think you get a lot of comments and interaction on your existing WordPress website,
try turning it into a social network to really get the conversions flowing.

BuddyPress
BuddyPress is social networking in a box. You can start up a social network with most
of the same features as Facebook in a matter of minutes.

You can download BuddyPress from the plugin repository like you would any other
plugin, or you can get it from the BuddyPress website. This plugin has come a long way
since version 1.0 was released in April of 2009. It was originally built by Andy Peatling
and only worked on WordPress MU (Multi User) at the time. Automattic saw the po‐
tential of a plugin that turns WordPress into a social networking application and started
funding the project.

Since version 1.7, BuddyPress has been theme agnostic, meaning you can turn it on and
it will work with any theme—well, most themes—if coded properly. Prior to version 1.7
(see Figure 3-2), you needed to use a BuddyPress theme in order to properly use the
plugin. This was good for people wanting to build a social network from scratch because
they could use the default theme that comes with BuddyPress, purchase a nice premium
BuddyPress child theme, or plan to build their own BuddyPress child theme. It was kind
of limiting to people that already had a WordPress website because they couldn’t just

82 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.wpallimport.com/
http://buddypress.org
http://www.it-ebooks.info/

turn on BuddyPress and have it work with their existing theme. In most cases, people
with existing websites that wanted to turn on BuddyPress needed to do some custom‐
ization, which is OK for someone who knows CSS, PHP, and how WordPress works.
But noncoders would have to hire someone to turn their existing theme (which they
may have already paid for) into a BuddyPress child or compatible theme. With newer
version of BuddyPress, it just works!

Figure 3-2. Welcome to BuddyPress

People with existing websites can now turn on BuddyPress and any of its features and
it should work in their existing theme. It is also very easy to override any of the existing
styles to tailor the BuddyPress features more to your website. Special thanks to the more
recent core contributors, John Jacoby, Boone Gorges, Paul Gibbs, and todo: real name
RAY for making BuddyPress what it is today, a theme-independent plugin that turns
WordPress into a social network.

Database tables
Unlike a lot of WordPress plugins, BuddyPress creates its own database tables in MySQL.
If the original BuddyPress developers were to rewrite the plugin from scratch today,
they would probably store activities and notifications as custom posts instead of using

Community Plugins | 83

www.it-ebooks.info

http://www.it-ebooks.info/

custom tables. However, custom post types weren’t implemented when the original
version of BuddyPress was released and it would take a lot of effort to change that
architecture now. The custom tables that store groups and friend relationships between
users are much easier to understand and faster to query against that if these kinds of
things were stored as some combination of posts, user meta, and taxonomies.

For smaller distributed plugins, it makes sense to avoid custom tables whenever possible
because it means there is less overhead for users of the plugin to worry about. However,
for plugins specific to your app or plugins that include as much functionality as Bud‐
dyPress, custom tables can help to speed up or better organize your data. We’ve included
the schema for each BuddyPress table here (Table 3-3 through Table 3-18) as an example
of how you might go about structuring custom tables for your own apps and also to
help you understand how BuddyPress data is stored in case you would like to query for
that information directly.

Table 3-3. DB schema for wp_bp_activity table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

user_id bigint(20) No None

component varchar(75) utf8_general_ci No None

type varchar(75) utf8_general_ci No None

action text utf8_general_ci No None

content longtext utf8_general_ci No None

primary_link varchar(255) utf8_general_ci No None

item_id bigint(20) No None

secondary_item_id bigint(20) Yes NULL

date_recorded datetime No None

hide_sitewide tinyint(1) Yes 0

mptt_left int(11) No 0

mptt_right int(11) No 0

is_spam tinyint(1) No 0

Table 3-4. DB schema for wp_bp_activity_meta table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

activity_id bigint(20) No None

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

84 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-5. DB schema for wp_bp_friends table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

initiator_user_id bigint(20) No None

friend_user_id bigint(20) No None

is_confirmed tinyint(1) Yes 0

is_limited tinyint(1) Yes 0

date_created datetime No None

Table 3-6. DB schema for wp_bp_groups table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

creator_id bigint(20) No None

name varchar(100) utf8_general_ci No None

slug varchar(200) utf8_general_ci No None

description longtext utf8_general_ci No None

status varchar(100) utf8_general_ci No Public

enable_forum tinyint(1) No 1

date_created datetime No None

Table 3-7. DB schema for wp_bp_groups_groupmeta table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

group_id bigint(20) No None

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

Table 3-8. DB schema for wp_bp_groups_members table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

group_id bigint(20) No None

user_id bigint(20) No None

inviter_id bigint(20) No None

is_admin tinyint(1) No 0

is_mod tinyint(1) No 0

user_title varchar(100) utf8_general_ci No None

date_modified datetime No None

Community Plugins | 85

www.it-ebooks.info

http://www.it-ebooks.info/

Column Type Collation Null Default Extra

comments longtext utf8_general_ci No None

is_confirmed tinyint(1) No 0

is_banned tinyint(1) No 0

invite_sent tinyint(1) No 0

Table 3-9. DB schema for wp_bp_messages_messages table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

thread_id bigint(20) No None

sender_id bigint(20) No None

subject varchar(200) utf8_general_ci No None

message longtext utf8_general_ci No None

date_sent datetime No None

Table 3-10. DB schema for wp_bp_messages_notices table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

subject varchar(200) utf8_general_ci No None

message longtext utf8_general_ci No None

date_sent datetime No None

is_active tinyint(1) No 0

Table 3-11. DB schema for wp_bp_messages_recipients table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

user_id bigint(20) No None

thread_id bigint(20) No None

unread_count int(10) No 0

sender_only tinyint(1) No 0

is_deleted tinyint(1) No 0

Table 3-12. DB schema for wp_bp_notifications table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

user_id bigint(20) No None

item_id bigint(20) No None

86 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Column Type Collation Null Default Extra

secondary_item_id bigint(20) Yes NULL

component_name varchar(75) utf8_general_ci No None

component_action varchar(75) utf8_general_ci No None

date_notified datetime No None

is_new tinyint(1) No 0

Table 3-13. DB schema for wp_bp_user_blogs table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

user_id bigint(20) No None

blog_id bigint(20) No None

Table 3-14. DB schema for wp_bp_user_blogs_blogmeta table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

blog_id bigint(20) No None

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

Table 3-15. DB schema for wp_bp_xprofile_data table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

field_id bigint(20) No None

user_id bigint(20) No None

value longtext utf8_general_ci No None

last_updated datetime No None

Table 3-16. DB schema for wp_bp_xprofile_fields table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

group_id bigint(20) No None

parent_id bigint(20) No None

type varchar(150) utf8_general_ci No None

name varchar(150) utf8_general_ci No None

description longtext utf8_general_ci No None

is_required tinyint(1) No 0

Community Plugins | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Column Type Collation Null Default Extra

is_default_option tinyint(1) No 0

field_order bigint(20) No 0

option_order bigint(20) No 0

order_by varchar(15) utf8_general_ci No

can_delete tinyint(1) No 1

Table 3-17. DB schema for wp_bp_xprofile_groups table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

name varchar(150) utf8_general_ci No None

description mediumtext utf8_general_ci No None

group_order bigint(20) No 0

can_delete tinyint(1) No None

Table 3-18. DB schema for wp_bp_xprofile_meta table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

object_id bigint(20) No None

object_type varchar(150) utf8_general_ci No None

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

Components
After activating BuddyPress, head on over to the Components panel in Settings → Bud‐
dyPress or /wp-admin/options-general.php?page=bp-components to set up what com‐
ponents you would like to use. See Figure 3-3 for an illustration of the panel.

You will see the following components:
Extended Profiles

Just like any typical social network, BuddyPress has member profiles. A member
can join and have complete control of her own profile. Out of the box, all members
are listed in a members directory; once you click on a member, you will be taken
to her profile page.

Account Settings
Members can update their email address, change their password, and even manage
the email notifications they will receive when other members interact with them.

88 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Friend Connections
Members can add each other as friends. When one member requests to be friends
with another, the other member will receive a friend request. Think Facebook
friends.

Private Messaging
Members can send private messages to each other and view all of their messages in
one place, like an inbox for your social network. Members can reply, mark as read,
delete, and perform other actions with messages you might expect with any large
social network.

Activity Streams
Members can post activity updates to their profiles and groups, leave comments on
other members’ or groups’ activity, and favorite any activity post. Sounds kind of
like Facebook, right? BuddyPress has an @mention feature that is kind of like when
someone mentions you on Twitter. @mentions are automatically linked to the
mentioned member’s profile page, and if that member doesn’t have his notifications
turned off, he will receive an email about it. Activity also comes standard with RSS
feeds.

User Groups
A very powerful component of BuddyPress, groups can be created organically (or
not) by network members. Each group is listed on a Groups listing page, and click‐
ing on that group’s avatar brings you to that group’s profile page. The group profile
is set up very similar to the member profile page, but with group-specific subpages
like group activity, members, admin settings, and invite friends. Groups can be
public, private, or hidden and members can be promoted to group admins or group
moderators.

Site Tracking
Any new posts and comments on your site will create BuddyPress activity posts. If
you are running BuddyPress on a WordPress multisite network, any posts and
comments created on any site in your network will also create BuddyPress activity
posts.

All of these core BuddyPress components can be extended with BuddyPress plugins. It
can be a little confusing if you are new to all of this, but you can install additional plugins
specific to BuddyPress or build your own. There are approximately 485 WordPress
plugins that extend or integrate with BuddyPress in one way or another.

Community Plugins | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-3. BuddyPress components

Pages
Once you have decided which core components you want to use, go to the Pages tab at
Settings → BuddyPress → Pages (shown in Figure 3-4). BuddyPress maps the compo‐
nents it is using to new or existing pages. By default, BuddyPress will try to make a new
page for each component. If you wanted to call members “Students” instead of “Mem‐
bers,” you could create a regular WordPress page called “Students” and map the members
component to this new page. The same goes for other BuddyPress components. You
will notice two pages that need to be created for member registration, Register and
Activate. You will need to map both of these to pages if you wish to have open registration
on your social network.

90 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-4. BuddyPress pages

To allow open registration, you will also have to make sure that
anyone can register; check the “Anyone can register” checkbox un‐
der Settings → General.

Settings
In the Settings panel (Settings → BuddyPress → Settings) or /wp-admin/admin.php?
page=bp-settings, you can configure some additional BuddyPress settings:
Toolbar

By default, BuddyPress shows the WordPress admin bar with a Login and Register
link for non-logged-in users. If you would like to turn this off, you can do so here.

Community Plugins | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Account Deletion
You can decide if you want to allow registered users to be able to delete their ac‐
counts.

Avatar Uploads
Allow registered members to upload avatars.

Profile Syncing
Enable BuddyPress to WordPress profile syncing.

Group Creation
Allow your registered members to create their own groups. Site admins can still
create groups if this setting is turned off.

Blog & Forum Comments
Allow activity stream commenting on blog and forum posts.

Profile fields
Located at Users → Profile Fields or /wp-admin/users.php?page=bp-profile-setup, this
BuddyPress feature allows you to create any number of profile field groups and profile
fields for your members. You can collect data such as location, date of birth, likes, dis‐
likes, favorite color, and/or whatever you want. This feature is very flexible in allowing
you to organize your profile fields into different profile groups, all of which will be made
available on any member’s frontend profile page.

When adding any new profile field, you are provided with a slick UI for deciding to
make your new field required or not, what type of form element it should be, what the
default visibility is, and whether you want your members to be able to decide if they can
change the visibility for the field. This form is shown in Figure 3-5.

By default, all of the profile fields in the “Base” profile group will show
up on the registration page.

92 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-5. BuddyPress profile fields

BuddyPress plugins
As you can see, BuddyPress is a very intuitive and easy-to-use plugin. We talked briefly
about installing additional BuddyPress specific plugins. Below is a quick list of some
cool BuddyPress plugins so you can get an idea of how BuddyPress can be extended:
BuddyPress Toolbar

Adds a BuddyPress menu to the existing WordPress admin menu. This is a great
plugin for administering your BuddyPress web application.

BuddyPress FollowMe
Allows your members to follow each other. This is kind of like the built-in friending
functionality but more like a Twitter or Instagram approach where a member can
follow other members that they are interested in. Each member will be able to see
in her profile all of the activity of the other members she’s following.

BuddyPress Media
This plugin allows your members to upload photos, music, and videos to their
activity posts. It also allows for your members to organize all of their photos into
photo albums on their profile page. There is mobile device support that includes
automatic audio and video conversion.

Community Plugins | 93

www.it-ebooks.info

http://bit.ly/bp-toolbar
http://bit.ly/bp-follow
http://bit.ly/bp-rtmedia
http://www.it-ebooks.info/

BuddyPress Registration Options
This is a great plugin for stopping spam bots from registering on your BuddyPress
website! This plugin allows for new member moderation, if moderation is turned
on from the admin settings page; any new members will be blocked from interacting
with any BuddyPress components (except editing their own profile and uploading
their avatar) and will not be listed in any directory until an administrator approves
or denies their account. If moderation is turned on, admins can create custom
display messages and email alert messages for approved or denied accounts. When
an admin approves or denies, custom emails get sent out to new members telling
them they were approved or denied.

BuddyMobile
This plugin automatically provides a slick UI for BuddyPress when browsing
your site from a mobile device.

BadgeOS Community Add-on
The BadgeOS Community Add-on integrates BadgeOS features into BuddyPress
and bbPress. Site members complete achievements and earn badges based on a
range of community activity and triggers. This add-on to BadgeOS also includes
the ability to display badges and achievements on user profiles and activity feeds.

bbPress
Got forums? bbPress can fulfill all of your forum needs. Unlike BuddyPress, bbPress
utilizes custom post types, so it does not create its own tables in the database like it
used to in prior versions.

Using bbPress can require a bit of theme work if your theme isn’t already styled to
support bbPress, but it is by far the easiest way to add forum functionality to a
WordPress site.

94 | Chapter 3: Leveraging WordPress Plugins

www.it-ebooks.info

http://bit.ly/bp-regis
http://bit.ly/buddymobile
http://bit.ly/badgeos
http://bbpress.org/
http://www.it-ebooks.info/

CHAPTER 4

Themes

WordPress themes drive the frontend of your web app. In Chapter 1, we presented the
analogy that WordPress themes are like views in a traditional MVC framework. The
analogy isn’t perfect by any means, but themes and views are similar in that they both
control the way your app will look and are where your designers will spend most of their
time.

NThe WordPress community has put together a Theme Developer Handbook that is
the definitive source for learning how to build themes for WordPress in a standards-
based way. All theme developers should use that resource. This chapter will cover areas
of theme development especially important to app developers.

Themes Versus Plugins
At some level, all source files in your themes and plugins are just .php files loaded at
different times by WordPress. In theory, your entire app code could reside in one theme
or one plugin. In practice, you’ll want to reserve your theme for code related to the
frontend (views) of your website and use plugins for your app’s backend (models and
controllers).

Where you decide to put some code will depend on whether you are primarily building
a full app or an individual plugin or theme.

When Developing Apps
If you are building a full web app, basically one install of WordPress, you will have full
access to the site and what themes and plugins are installed. Your code could go any‐
where. Even so, you should follow some thought process when deciding if a particular
feature should be coded as a module of your app’s plugin or theme or as a separate plugin.
The main benefactor of your good planning at this step will be your developers (maybe

95

www.it-ebooks.info

http://bit.ly/theme-handb
http://www.it-ebooks.info/

1. If you find that you must hack the core to get something to work, first reconsider if you really need to hack
the core. If you do need to change a core WordPress file, add hooks instead and submit those hooks as a patch
to the next version of WordPress.

just you). Properly organizing your code is going to make it easier for you to maintain
your app and develop it further.

When building apps, we try to use the following guidelines:

• One main plugin to store the core app code, and one theme to manage the frontend
code.

• Any modular functionality that could be useful on other projects or potentially
replaced by another plugin should be coded as a separate plugin.

• Never hack the core!1

So what is core app code and what is frontend code? Again our pseudo-MVC framework
looks like this:
Plugins = Models

All of your code-defining data structures, business logic, and AJAX services should
go into the core plugin. Things like definitions for custom post types and taxono‐
mies, form processing, and class wrappers for the Post and User classes should go
in your core plugin.

Themes = Views
All of your templating code and frontend logic should go in your theme. The frame
of your website, header, footer, menu, and sidebars should be coded in your theme.
Simple logic like if(is_user_logged_in()) { //show menu } else { //show
login } should go into your theme.

One thing to consider when deciding where to code features is your development team.
If your team consists of one person, you’re going to know what decision you make. If
you have a separate designer and programmer, you should be more inclined to put things
the designer is going to be concerned with in the theme and things the programmer is
going to be concerned with in the core plugin. Even if you have to wiggle a little bit,
having things clearly separated like that will make it easier for your developers to find
what they are looking for.

When Developing Plugins
If you are building a plugin to be used on other websites or modular features that can
be used across projects, it makes sense to keep your code within one plugin. In these
cases, you can store template files inside your plugin to handle the UI components. It

96 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

is common practice to allow these files to be overwritten by the active WordPress theme,
which will be covered later in this chapter.

When Developing Themes
Similarly, if you are developing a theme to be distributed that relies on custom post
types or another customization that would typically be coded in a plugin, it might make
sense to include that inside your theme instead. If your users must activate a plugin
before your theme works at all, you might as well move the plugin code into your theme.
If your theme makes large underlying changes to WordPress, consider putting that
plugin-like code into a parent theme and putting your design-related code into a child
theme. That way if your users want to change their site’s design without losing the other
functionality provided by a theme, they can do so more easily.

On the other hand, if code you are about to add to your theme is not crucial to the theme
working or there are other plugins that could be used as alternatives for your code, you
should move that code into a plugin and distribute your theme as a bundle including
the themes and recommended plugins. As an example, many premium themes add
SEO-related fields to the edit post page to manage page titles, meta description, and
meta keywords. This makes sense, since these SEO-related fields represent a kind of
view that is seen by Google and other web crawlers. However, there are a few really
popular plugins that do this same functionality, and it’s hard to argue that your theme
wouldn’t work without the SEO functionality installed. We would recommend theme
developers put their SEO functionality into plugins or otherwise make it easy to disable
so other plugins can be used.

In the end, the decision of where to put what code and how to package things should
be based on your users, both end users and developers who will be using your themes
and plugins. Part of the beauty of WordPress is that it is flexible in terms of the ways
you can go about customizing it. There are no strict rules. Consider everything you read
about this topic (including from us) as guidelines. If moving some code from a plugin
file to a theme file will make it easier to work with, do it.

The Template Hierarchy
When a user visits your site and navigates to a page, WordPress uses a system called the
Template Hierarchy to figure out which file in the active theme should be used to render
the page. For example, if the user browses to a single post page, WordPress will look for
single-post.php. If that’s not found, it will look for single.php. If that’s not found it will
look for index.php.

The Template Hierarchy | 97

www.it-ebooks.info

http://www.it-ebooks.info/

The index.php file is the fallback for all page loads and along with style.css is the only
required file for your theme. More typically, you will have a list of files like:

• 404.php
• author.php
• archive.php
• attachment.php
• category.php
• comments.php
• date.php
• footer.php
• front-page.php
• functions.php
• header.php
• home.php
• image.php
• index.php
• page.php
• search.php
• sidebar.php
• single.php
• single-(post-type).php
• style.css
• tag.php
• taxonomy.php

Some files in this list are loaded when you call a specific get function. For example,
get_header() loads header.php, get_footer() loads footer.php, and get_sidebar()
loads sidebar.php. Passing a name parameter to these functions will add it to the filename
loaded; so, for example, get_header('alternate'); will load header-alternate.php
from the theme folder.

The function comments_template() will load comments.php unless you pass a different
filename as the first parameter.

The function get_search_form() will look for the file searchform.php in your theme
folder or output the default WordPress search form if no file is found.

98 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress has good documentation for the Template Hierarchy, which lays out all the
various files WordPress will look for in a theme folder when they are loaded. You can
also take a look at the Twenty Twelve Theme or some other well-coded theme to see
what filenames are going to be detected by WordPress. Read the comments in those
themes to see when each page is loaded.

When developing apps with custom post types, it’s common to want to use a different
template when viewing your post types on the frontend. You can override the single
post and archive view for your post types by adding files with the names single-
(post_type).php and archive-(post_type).php, where (post_type) is set to the value used
when the post type was registered.

Page Templates
One of the easiest ways to get arbitrary PHP code running on a WordPress website is
to build a page template into your theme and then use that template on one of your
pages.

Some common templates found in WordPress themes include contact forms and land‐
ing page forms.

Sample Page Template
Example 4-1 is a pared-down version of a contact form template that you can drop into
your theme’s folder.

Example 4-1. Sample page template
<?php
/*
Template Name: Page - Contact Form
*/

//get values possibly submitted by form
$email = sanitize_email($_POST['email']);
$cname = sanitize_text_field($_POST['cname']);
$phone = sanitize_text_field($_POST['phone']);
$message = sanitize_text_field($_POST['message']);
$sendemail = !empty($_POST['sendemail']);

// form submitted?
if (!empty($sendemail)
 && !empty($cname)
 && !empty($email)
 && empty($lname)) {

 $mailto = get_bloginfo('admin_email');
 $mailsubj = "Contact Form Submission from " . get_bloginfo('name');
 $mailhead = "From: " . $cname . " <" . $email . ">\n";

Page Templates | 99

www.it-ebooks.info

http://bit.ly/temp-hier
http://bit.ly/2012-theme
http://www.it-ebooks.info/

 $mailbody = "Name: " . $cname . "\n\n";
 $mailbody .= "Email: $email\n\n";
 $mailbody .= "Phone: $phone\n\n";
 $mailbody .= "Message:\n" . $message;

 // send email to us
 wp_mail($mailto, $mailsubj, $mailbody, $mailhead);

 // set message for this page and clear vars
 $msg = "Your message has been sent.";

 $email = "";
 $cname = "";
 $phone = "";
 $message = "";
}
elseif (!empty($sendemail) && !is_email($email))
 $msg = "Please enter a valid email address.";
elseif (!empty($lname))
 $msg = "Are you a spammer?";
elseif (!empty($sendemail) && empty($cname))
 $msg = "Please enter your name.";
elseif (!empty($sendemail) && !empty($cname) && empty($email))
 $msg = "Please enter your email address.";

// get the header
get_header();
?>
<div id="wrapper">
 <div id="content">
 <?php if (have_posts()) : while (have_posts()) : the_post(); ?>
 <h1><?php the_title(); ?></h1>
 <?php if (!empty($msg)) { ?>
 <div class="message"><?php echo $msg?></div>
 <?php } ?>
 <form class="general" action="<?php the_permalink(); ?>" method="post">
 <div class="form-row">
 <label for="cname">Name</label>
 <input type="text" name="cname" value="<?php echo esc_attr($cname);?>"/>
 <small class="red">* Required</small>
 </div>
 <div class="hidden">
 <label for="lname">Last Name</label>
 <input type="text" name="lname" value="<?php echo esc_attr($lname);?>"/>
 <small class="red">LEAVE THIS FIELD BLANK</small>
 </div>
 <div class="form-row">
 <label for="email">Email</label>
 <input type="text" name="email" value="<?php echo esc_attr($email);?>"/>
 <small class="red">* Required</small>
 </div>
 <div class="form-row">

100 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

 <label for="phone">Phone</label>
 <input type="text" name="phone" value="<?php echo esc_attr($phone);?>"/>
 </div>
 <div class="form-row">
 <label for="message">Question or Comment</label>
 <textarea class="textarea" id="message" name="message" rows="4" cols="55">
 <?php echo esc_textarea($message)?>
 </textarea>
 </div>

 <div class="form-row">
 <label for="sendemail"> </label>
 <input type="submit" id="sendemail" name="sendemail" value="Submit"/>
 </div>
 </form>
 <?php endwhile; endif; ?>
 </div>
</div>
<?php
// get the footer
get_footer();
?>

WordPress will scan all .php files in your active theme’s folder and subfolders (and the
parent theme’s folder and subfolders) for templates. Any file with a comment including
the phrase Template Name: in it will be made available as a template.

The template is loaded after the WordPress init and wp actions have already fired. The
theme header and the wp_head action will not load until you call get_header() in your
template. So you can use the top of your template file to process form input and poten‐
tially redirect before any headers are sent to the page.

Your template file will need to include the same HTML markup as your theme’s page.php
or single post template. In the preceding example, I include a wrapper div and content
div around the content of the contact form.

The preceding code has a few other notable features. It uses the sani

tize_text_field() and sanitize_email() functions to clean up values submitted by
the form. Similarly, it uses the esc_attr() and esc_textarea() functions to prevent
cross-site scripting attacks. These functions are covered more in Chapter 8.

The preceding contact form also incorporates a “honey pot.” A field called “lname”
would be hidden using CSS. So normal users would not see this field and thus leave it
blank when submitting the form. Bots looking to take advantage of your contact form
to send you spam will see the lname field and will put some value into it. The code
processing the form checks to make sure that the lname field is blank before sending
out the email. Like a honey pot drawing bees to it, the hidden lname field draws spam‐
mers into it so you don’t end up sending email on their behalf.

Page Templates | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Using Hooks to Copy Templates
If you’d rather not change multiple template files when you update the ID or class names
of your wrapper divs, you can create a template that uses the the_content filter or
another action specific to your theme to place content into the main content area of
your page. Then you can load another template file, like the core page.php template,
which will include calls to load your site’s frame and default layout. Example 4-2 shows
how to create a page template that loads the page.php template and adds additional
content below it on certain pages.

Example 4-2. Hooking template
<?php
/*
 Template Name: Hooking Template Example
*/

//what's the main post_id for this page?
global $post, $main_post_id;
$main_post_id = $post->ID;

//use the default page template
require_once(dirname(__FILE__) . "/page.php");

//now add content using a function called during the the_content hook
function template_content($content)
{
 global $post, $main_post_id;

 //we don't want to filter posts that aren't the main post
 if($post->ID != $main_post_id)
 return $content;

 //capture output
 ob_start();
 ?>
 <p>This content will show up under the page content.</p>
 <?php
 $temp_content = ob_get_contents();
 ob_end_clean();

 //append and return template content
 return $content . $temp_content;
}
add_action("the_content", "template_content");

In the previous example, we do a little trick to store the main post ID in a global variable.
Typically the global $post will be the main post of the page you have navigated to.
However, other loops on your page will temporarily set the global $post to whatever
post they are dealing with at the time. For example, if your template uses a WordPress

102 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

menu, that is really a loop through posts of type “menu.” Many sidebars and footer
sections will loop through other sets of posts.

So at any given moment (like when trying to filter the the_content hook) you can’t be
sure which post is set in the global $post. At the start of the template file, we know we
are not in a loop, and the global $post will be the same as the page you are currently
viewing. So we can copy the ID into another global variable to remember. Later on in
the template_content function, we check if the $post we are filtering has the same ID
as the main post. If not, we just return the content. If we are filtering the main post, we
add our template section to the end of it.

You can also insert your own hook into your page.php and other core templates to do
something similar. Just add something like do_action('my_template_hook'); at the
point in your page template where you’d like to add in extra content.

When to Use a Theme Template
In Chapter 3, we covered a way to use shortcodes to create pages for your plugins. The
shortcodes are useful because they allow you to add CMS-managed content above and
below the shortcode in the post content field and keep your code organized within your
plugin.

So if you are distributing a plugin and need that page template to go along with it, you
should use the shortcode method to generate your page.

Similarly, if you are distributing a theme by itself, any templates needed for the theme
will need to be included within the theme folder. You could include code for shortcode-
based templates within your theme, but templates are a more standard way of templating
a page.

And finally, if your template needs to alter the HTML of your default page layouts, you
will want to use a template file inside of your theme. Example 4-2 piggybacks on the
page.php template to avoid having to rewrite the wrapping HTML. But if the whole point
of the template is to rewrite the wrapping HTML (e.g., with a landing page template
where you want to hide the default header, footer, and menu), then you definitely need
to use a template.

Theme-Related WP Functions
Next we’ll discuss get_template_part($slug,$name = null); the get_tem

plate_part() function can be used to load other .php files (template parts) into a file
in your theme.

Theme-Related WP Functions | 103

www.it-ebooks.info

http://www.it-ebooks.info/

According to the Codex, $slug refers to “the slug name for the generic template,” and
$name refers to “the name of the specialized template.” In reality, both parameters are
simply concatenated with a dash to form the filename looked for: slug-name.php.

The Twenty Twelve theme uses get_template_part() to load a specific post format
“content” part into the WordPress loop:

<?php /* Start the Loop */ ?>
<?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('content', get_post_format()); ?>
<?php endwhile; ?>

If your template part is in a subfolder of your theme, add the folder name to the front
of the slug:

get_template_part(‘templates/content’, ‘page’);

The get_template_part() function uses the locate_template() function of Word‐
Press to find the template part specified, which then loads the file using the load_tem
plate() function. locate_template() first searches within the child theme. If no
matching file is found in the child theme, the parent theme is searched.

Besides searching both the child and parent themes for a file, the other benefit to using
get_template_part() over a standard PHP include or require call is that a set of
WordPress global variables are set up before the file is included. Here is the source for
the load_template() function from WordPress 3.6, showing the global variables that
are set. Notice that the query_vars array is also extracted into the local scope:

<?php
function load_template($_template_file, $require_once = true) {
 global $posts, $post, $wp_did_header, $wp_query, $wp_rewrite;
 global $wpdb, $wp_version, $wp, $id, $comment, $user_ID;

 if (is_array($wp_query->query_vars))
 extract($wp_query->query_vars, EXTR_SKIP);

 if ($require_once)
 require_once($_template_file);
 else
 require($_template_file);
}
?>

Using locate_template in Your Plugins
A common design pattern used in plugins is to include templates in your plugin folder
and allow users to override those templates by adding their own versions to the active
theme. For example, in SchoolPress, teachers can invite students to their class. The invite
form is stored in a template within the plugin:

104 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

//schoolpress/templates/invite-students.php
?>
<p>Enter</p>
<form action=”” method=”post”>
 <label for=”email”>Email:</label>
<input type=”text” id=”email” name=”email” value=”” />
 <input type=”submit” name=”invite” value=”Invite Student” />
</form>

SchoolPress is envisioned as a software as a service application, but we also plan to
release a plugin version for others to use on their own sites. Users of the plugin may
want to override the default template without editing the core plugin since any edits to
the core plugin, would be overwritten when the plugin was upgraded.

To enable users of our plugin to override the invite template, we’ll use code like the
following when including the template file:

//schoolpress/shortcodes/invite-students.php
function sp_invite_students_shortcode($atts, $content=null, $code="")
{
 //start output buffering
ob_start();

 //look for an invite-students template part in the active theme
 $template = locate_template(“schoolpress/templates/invite-students.php”);

 //if not found, use the default
 if(empty($template))
 $template = dirname(__FILE__) .
 “/../templates/invite-students.php”;

 //load the template
 load_template($template);

 //get content from buffer and output it
 $temp_content = ob_get_contents();
 ob_end_clean();
 return $temp_content;
}
add_shortcode("invite-students", "sp_invite_students_shortcode");

The preceding code uses our shortcode template from Chapter 3. But instead of em‐
bedding the HTML directly into the shortcode function, we load it from a template file.
We first use locate_template() to search for the template in the active child and parent
themes. Then if no file is found, we set $template to the path of the default template
bundled with the plugin. The template is loaded using load_template().

Theme-Related WP Functions | 105

www.it-ebooks.info

http://www.it-ebooks.info/

Style.css
The style.css file of your theme must contain a comment used by WordPress to track
the theme’s version and other information to show in the WordPress dashboard. Here
is the comment from the top of style.css in the Twenty Thirteen theme:

/*
Theme Name: Twenty Thirteen
Theme URI: http://wordpress.org/themes/twentythirteen
Author: the WordPress team
Author URI: http://wordpress.org/
Description: The 2013 theme for WordPress takes us back to the blog,
featuring a full range of post formats, each displayed beautifully in their
own unique way. Design details abound, starting with a gorgeous color scheme and
matching header images, optional display fonts for beautiful typography, and a
wide layout that looks great on large screens yet remains device-agnostic
and is readable on any device.
Version: 0.1
License: GNU General Public License v2 or later
License URI: http://www.gnu.org/licenses/gpl-2.0.html
Tags: black, brown, orange, tan, white, yellow, light, one-column, two-columns,
right-sidebar, flexible-width, custom-header, custom-menu, editor-style,
featured-images, microformats, post-formats, rtl-language-support,
sticky-post, translation-ready
Text Domain: twentythirteen

This theme, like WordPress, is licensed under the GPL.
Use it to make something cool, have fun, and share what you've learned
with others.
*/

The style.css file of the active theme (and parent theme if applicable) is automatically
enqueued by WordPress.

Versioning Your Theme’s CSS Files
It’s good practice to set a version for your CSS files when loading them through wp_en
queue_style(). This way, if you update your CSS, you can update the version as well
and avoid having your site’s users see a seemingly broken site using a version of the
stylesheet cached by the browser.

When WordPress enqueues your theme’s style.css file for you, it uses the overall Word‐
Press version when loading the stylesheet. The line output in your site’s head tag will
look like this:

<link rel='stylesheet'
 id='twentytwelve-style-css'
 href='.../wp-content/themes/twentytwelve/style.css?ver=3.5.2'
 type='text/css'
 media='all' />

106 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

Updates to the stylesheet, your app’s version number, or even the version number set in
the style.css comment won’t update the version added to the stylesheet when enqueued.
It will always match the WordPress version number.

One solution is to remove all CSS from your style.css file into other CSS files in your
theme and load those CSS files through wp_enqueue_style() calls in the theme’s func‐
tions.php file. It would look like this for style.css:

/*
 Theme Name: SchoolPress
 Version: 1.0

 That's it! All CSS can be found in the "css" folder of the theme.
*/

and like this for functions.php:

<?php
define('SCHOOLPRESS_VERSION', '1.0');
function sp_enqueue_theme_styles() {
 if (!is_admin()) {
 wp_enqueue_style('schoolpress-theme',
 get_stylesheet_directory_uri() . '/css/main.css',
 NULL,
 SCHOOLPRESS_VERSION
);
 }
}
add_action('init', 'sp_enqueue_theme_styles');
?>

A constant like SCHOOLPRESS_VERSION would typically be defined in our main
plugin file, but it’s included here for clarity. The preceding code will load our new /css/
main.css file with the main app version appended so new versions of the app won’t
conflict with browser-cached stylesheets.

There is another way to change the version of the main style.css file without moving it
to another file entirely. We use the wp_default_styles filter. This filter passes an object
containing the default values used when a stylesheet is enqeued. One of those values is
the default_version, which can be changed like so:

define('SCHOOLPRESS_VERSION', '1.0');
function sp_wp_default_styles($styles)
{
 //use release version for stylesheets
 $styles->default_version = SCHOOLPRESS_VERSION;
}
add_action("wp_default_styles", "sp_wp_default_styles");

Now our main stylesheet will be loaded using the SchoolPress app version instead of
the main WordPress version. We can keep our CSS in style.css if we want to, though it’s

Style.css | 107

www.it-ebooks.info

http://www.it-ebooks.info/

often a good idea to move at least some parts of the CSS into separate files in a “css”
folder of your theme:

<link rel='stylesheet'
 id='twentytwelve-style-css'
 href='.../wp-content/themes/twentytwelve/style.css?ver=1.0'
 type='text/css'
 media='all' />

Functions.php
The functions.php file of your active theme (and parent theme if applicable) is loaded
every time WordPress loads. For this reason, the functions.php file is a popular place to
add little hacks and other random bits of code. On a typical WordPress site, the func‐
tions.php file can quickly become a mess.

However, we’re developing a well-planned WordPress app, and our function.php files
don’t have to be a mess. Just like we break up the core functions of our main app plugin
into smaller includes, you should do the same with your theme’s functions.php. You
could add files similar to the following to your theme’s folder:

• /includes/functions.php—Where you really place helper functions.
• /includes/settings.php—For code related to theme settings and options.
• /includes/sidebars.php—To define sidebars/widget areas.

Additionally, make sure that code you are adding to your theme’s functions.php is related
to the frontend display of your site. Code that applies to the WordPress dashboard,
backend processing for your app, or your entire app in general should most likely be
added somewhere within the main app plugin.

Themes and Custom Post Types
Custom post types are just posts, so by default, your CPTs will be rendered using the
single.php template or index.php if no single.php template were available.

Custom post types, including specifying templates for them, are covered in more detail
in Chapter 5.

Popular Theme Frameworks
There are a lot of theme frameworks, both WordPress-specific frameworks and general-
purpose HTML/CSS frameworks, that you can use when building apps with Word‐
Press. Whether you intend to use the theme framework to build a quick proof of concept

108 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

or to use it as a core component of your custom-built theme, using a theme framework
can save you a lot of time.

We’ll briefly cover some popular theme frameworks and dive deeper into how to use
two of the most popular theme frameworks used in WordPress app development.

But first, what does a theme framework provide?

WP Theme Frameworks
WordPress theme frameworks are themes that are meant to be used as parent themes
or starter themes to jumpstart your frontend development. Theme frameworks will
typically include basic styles and layouts for blog posts, archives, pages, sidebars, and
menus. Some are heavier or lighter weight than others. Some include CSS classes,
shortcodes, and other handy bits of code to help you create new layouts and add UI
elements to your pages. All frameworks are likely to save you a lot of time.

There are two reasons to choose one theme framework over another. You either choose
a child theme that visually looks very close to your vision for your app or you choose a
framework that is coded in a way that feels right when working with it.

_s (Underscores)
_s (pronounced “underscores”) is a starter theme published by Automattic that has all
the common components you need in a WordPress theme. Unlike most other frame‐
works, _s is not meant to be used as a parent theme. It’s meant to be used as a starting
point for your own parent theme. All of the themes developed by Automattic for Word‐
Press.com are based on the _s theme.

To use _s, you should download the code and change the directory name and all refer‐
ences to _s with the name of your theme. There are good instructions for doing this in
the project’s readme file or, even better, a tool to do it for you automatically on the
underscores website.

The stylesheet in _s is very minimal with no real styling, just a bit of code for layout and
some common readability and usability settings.

_s is best for designers who are able to and want to build their own theme from scratch.
It’s basically code you would have to write somehow for your theme yourself. The _s
code is not abstracted as heavily as some of the other theme frameworks, and so using
the framework should be easier to pick up for designers more familiar with HTML and
CSS than PHP.

StartBox
StartBox is a theme framework written by Brian Richards and maintained by Brian
Messenlehner’s company WebDevStudios that is focused on providing “valid markup

Popular Theme Frameworks | 109

www.it-ebooks.info

http://bit.ly/s-readme
http://www.underscores.me
http://www.it-ebooks.info/

2. This quote is taken from the StartBox about page.

and dynamically generated classes and IDs throughout the entire layout”2 that makes it
easier to control the look and feel of the theme through CSS. Or stated another way,
customizing a StartBox theme will require less tweaking of the underlying HTML
markup than needed when customizing other themes.

StartBox is meant to be used as a parent theme. You can write your own child theme
that inherits it or you can use one of the child themes provided by StartBox. As stated
before, the theme dynamically generates useful CSS classes on elements in the theme to
help you style certain sections and pages. The theme also provides many shortcodes,
widgets, hooks, and filters that can be used to build out your pages and customize the
default functionality of the parent theme.

StartBox is best for designer-developers and really our choice for starting themes based
on its balance of framework support on the design and coding side of theme develop‐
ment.

Genesis
Genesis is a theme framework developed by StudioPress and used in over 40 child
themes published by StudioPress and in many more themes published by third-party
designers.

Like StartBox, the Genesis theme is meant to be used as a parent theme. StudioPress
has child themes that are appropriate across a number of business and website types.
Or you can create your own child theme that inherits from Genesis.

The Genesis framework abstracts the underlying HTML and CSS more than the other
frameworks listed here. We find this makes it a little harder to work with when doing
larger customizations. However, Genesis would be a good choice if you find one of their
child themes is 80% of the way toward the look you want or if you find their framework
easier to work with than other options.

Non-WP Theme Frameworks
In addition to WordPress theme frameworks, there are also application UI frameworks
that provide markup, stylesheets, and images for common UI patterns and elements.
Some popular UI frameworks include Twitter Bootstrap, Zurb’s Foundation, and Gum‐
by.

Incorporating a UI framework into your theme can be as easy as copying a few files into
the theme folder and enqueueing the stylesheets and JavaScript, and will give you easy
access to styled UI elements like buttons, tabs, pagination, breadcrumbs, labels, alerts,
and progress bars.

110 | Chapter 4: Themes

www.it-ebooks.info

http://wpstartbox.com/about/
http://getbootstrap.com/
http://foundation.zurb.com/
http://gumbyframework.com
http://gumbyframework.com
http://www.it-ebooks.info/

Below we’ll cover how to add Bootstrap assets into a StartBox child theme, but the same
process should work for other combinations of WordPress themes and UI frameworks.

Creating a Child Theme for StartBox
To create your theme, you’ll need to follow these steps:

1. Create a new folder in your wp-content/themes folder, for example, startbox-child.
2. Create a style.css file in the startbox-child folder.
3. Paste the following into your style.css file:

/*
THEME NAME: StartBox Child
THEME URI: http://bwawwp.com/wp-content/themes/startbox-child/
DESCRIPTION: StartBox Child Theme
VERSION: 0.1
AUTHOR: Jason Coleman
AUTHOR Uri: http://bwawwp.com
TAGS: startbox, child, tag
TEMPLATE: startbox
*/
@import url("../startbox/style.css");

The key field in the comment is the TEMPLATE field, which needs to match the
folder of the parent theme, in this case startbox. The only required file for a child
theme is style.css. So at this point, you’ve created a child theme.
You can either copy all of the CSS from the parent theme’s style.css into the child
theme’s style.css and edit what you want to or you can use @import_url like we do
above to import the rules from the parent theme’s stylesheet and add more rules
below to override the parent theme’s styles.
In order to enqueue the bootstrap files, you will also need a functions.php file.

4. Create an empty functions.php file in the startbox-child folder for now.

Including Bootstrap in Your App’s Theme
In general, importing Bootstrap into the StartBox theme is kind of silly compared to
finding a theme based on Bootstrap or just copying in the CSS rules you need. However,
importing frameworks and libraries into your theme is something you might run into.
The following will give you an idea of how to go about importing other libraries and
frameworks into your theme.

Download the Bootstrap ZIP file into your startbox-child folder. After unzipping it, you
will have a dist folder containing the CSS and JS files for bootstrap. You can rename this

Creating a Child Theme for StartBox | 111

www.it-ebooks.info

http://getbootstrap.com
http://www.it-ebooks.info/

folder to bootstrap and delete the Bootstrap ZIP file. Your child theme folder should
look like this now:

• startbox-child
— bootstrap

— css
— js

— functions.php
— style.css

Now we will enqueue the Bootstrap CSS and JS by adding this code into the func‐
tions.php file inside your child theme:

<?php
function startbox_child_init() {
 wp_enqueue_style(
 'bootstrap',
 get_stylesheet_directory_uri() .
 '/bootstrap/css/bootstrap.min.css',
 'style',
 '3.0'
);
 wp_enqueue_script(
 'bootstrap',
 get_stylesheet_directory_uri() .
 '/bootstrap/js/bootstrap.min.js',
 'jquery',
 '3.0'
);
}
add_action('init', 'startbox_child_init');
?>

Note that we set the dependencies for the Bootstrap CSS to style, which will make sure
that the Bootstrap stylesheet loads after the StartBox stylesheet. We also set the Bootstrap
JS to depend on jquery and set the version of both files to 3.0 to match the version of
Bootstrap used.

At this point you could use any of your favorite Bootstrap styles or JavaScript in your
WordPress theme. Many of the Bootstrap styles for columns and layout aren’t being
used in the StartBox markup (StartBox has its own layout system), and so they won’t be
applicable to your theme. But the styles for form elements and buttons would be useful
for app developers.

112 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

Menus
Menus are an important part of most apps, and apps often have special needs for their
menus that other websites don’t have.

Some apps have multiple menus. Many mobile apps have a main navigational menu at
the top and a toolbar-like menu along the bottom.

Some apps have dynamic menus. Many apps have different menus or menu items for
logged-in users than for logged-out users. Menu items can be based on a user’s mem‐
bership level or admin capabilities.

Before we get into how to build more complicated menus and navigational elements
with WordPress, lets cover the standard way to add a menu to your theme.

Nav Menus
Since WordPress version 3.0, there has been a standard method for adding navigation
menus to themes. This involved registering the menu in the theme’s code, designating
where in the theme the menu is going to appear, and then managing the menu through
the WordPress dashboard.

The main benefit to using the built-in menu functionality in WordPress is that end users
can control the content of their menus using the GUI in the dashboard. Even if you are
a developer with full control over your app, it is still a good idea to use the built-in menus
in WordPress since you may have stakeholders who would want to manage menus or
you may want to distribute you theme to others in the future. The WordPress navigation
menus are also very easy to reposition and can take advantage of other code using menu-
related hooks or CSS styles.

To register a new navigational menu, use the register_nav_menu($location, $de
scription) function. The $location parameter is a unique slug used to identify the
menu. The $description parameter is a longer title for the menu shown in the drop‐
down in my menu tool in the dashboard:

register_nav_menu(“main”, “Main Menu”);

You can also register many menus at once using the register_nav_menus() (with an
s) variant. This function accepts an array of locations where the keys are the $loca
tion slugs and the values are the $description titles:

register_nav_menus(array(
 “main” => “Main Menu”,
 “logged-in” => “Logged-In Menu”
));

To place a navigational menu into your theme, use the wp_nav_menu() function:

Menus | 113

www.it-ebooks.info

http://www.it-ebooks.info/

3. You could check $_SERVER[‘PHP_SELF’] to see if you are on the wp-login.php page. In this example, we
assume our login is on a WordPress page with the slug “login.”

wp_nav_menu(array(‘theme_location’ => 'main'));

The theme_location parameter should be set to the $location set with regis
ter_nav_menu(). The wp_nav_menu() function can take many other parameters to
change the behavior and markup of the menu. The WordPress Codex page on Naviga‐
tion Menus is a good resource on the various parameters to the wp_nav_menu() function
and other ways to customize menus. We cover some of our favorite recipes in the fol‐
lowing sections.

Dynamic Menus
There are two main methods to make your WordPress menus dynamic so that different
menu items show up on different pages or different circumstances. The first is to set up
two menus and load a different menu in different cases. Here is a code example from
the Codex showing how to show a different menu to logged-in users and logged-out
users:

if (is_user_logged_in()) {
 wp_nav_menu(array('theme_location' => 'logged-in-menu'));
} else {
 wp_nav_menu(array('theme_location' => 'logged-out-menu'));
}

The other way to make your menu dynamic is to use the nav_menu_css_class filter to
add extra CSS classes to specific menu items. Then you can use CSS to hide/show certain
menu items based on their CSS class.

Say you want to remove a login link from a menu when you are on the login3 page. You
could use code like this:

function remove_login_link($classes, $item)
{
 f(is_page(‘login’) && $item->title == "Login")
 $classes[] = "hide"; //hide this item

 return $classes;
}
add_filter(“nav_menu_css_class”, “sp_nav_menu_css_class”, 10, 2);

Another way to customize the markup of your menus is to use a Custom Walker class.
Custom Walker classes are covered in Chapter 7.

114 | Chapter 4: Themes

www.it-ebooks.info

http://bit.ly/nav-codex
http://bit.ly/nav-codex
http://www.it-ebooks.info/

Responsive Design
We could write a whole book about responsive design. Luckily for us, many people
already have, including Clarissa Peterson, who wrote Learning Responsive Web De‐
sign (O’Reilly). The general concept behind responsive design is somehow detecting
properties of the client device and adjusting your apps layout, design, and functionality
to work best for that device. We will cover a few different techniques for doing this here.

Device and Display Detection in CSS
The main method of device detection in CSS is media queries. Media queries are used
in stylesheets or added as a property of the <link> tag used to embed a stylesheet to
limit the scope of the CSS rules inside of the stylesheet to a particular media type or
cases where a particular media feature is available.

Mozilla has a good document explaining media queries and listing the various properties
and operators you can use to construct a media query.

A common use of media queries is to hide certain elements and adjust font and element
sizes when someone is printing. Here is how you would specify that media query in a
<link> tag, inside of a stylesheet, and through a wp_enqueue_style call:

<link rel="stylesheet" media="print" href="example.css" />

<style>
@media print
{
 .hide-from-print {display: none;}
 .show-when-printing {display: auto;}
}
</style>

<?php
 wp_enqueue_style(‘example’, ‘example.css’, NULL, ‘1.0’, ‘print’);
?>

A more typical example in the responsive design world is to check for a min-width and/
or max-width in the media query to adjust styles as the screen gets smaller or larger. The
following is an example from the Bootstrap responsive stylesheet that adjusts CSS rules
for screens between 768 and 979 pixels, which is the width of a typical browser window
on a modern monitor. Sizes above 979 pixels could be considered extra wide:

@media (min-width: 768px) and (max-width: 979px) {
 .hidden-desktop {
 display: inherit !important;
 }
 .visible-desktop {
 display: none !important ;
 }

Responsive Design | 115

www.it-ebooks.info

http://oreil.ly/learn-rwd
http://oreil.ly/learn-rwd
http://mzl.la/css-mq
http://www.it-ebooks.info/

4. Retina is a brand name that Apple for their high-resolution displays. However, the term “Retina” is often used
in code comments and documentation to refer to any high-resolution display.

 .visible-tablet {
 display: inherit !important;
 }
 .hidden-tablet {
 display: none !important;
 }
}

Another common task handled with media queries is to change styles, and specifically
swap images, when a browser has a Retina4 screen.

Here is a mix of media queries used in some of the WordPress dashboard CSS to detect
a high-resolution display. The queries test against pixel ratio and DPI. Values vary from
display to display, but most standard definition displays will have a 1:1 pixel ratio and
96 DPI. A Retina display has a pixel ratio of 2:1 and DPI of 196 or higher, but we can
test for minimal values somewhere between standard definition and Retina-level defi‐
nition to catch other high-resolution displays:

@media(-o-min-device-pixel-ratio: 5/4), /* Opera */
 (-webkit-min-device-pixel-ratio: 1.25), /* Webkit */
 (min-resolution: 120dpi) { /* Others */
 /* add your high res CSS here */
 }

Media queries are powerful and can be used to make UIs that are very flexible. Browsers
and CSS standards are constantly evolving. It’s important to stay on top of things so the
latest phones, tablets, and monitors will show your app the way you intend.

Which properties to look out for and how to adjust your stylesheet to accommodate
them is outside the scope of this book, but hopefully you get the idea and understand
how to incorporate media queries into your WordPress themes.

Device and Feature Detection in JavaScript
Your app’s JavaScript can also benefit from device and feature detection. jQuery offers
methods to detect the window and screen sizes and other information about the brows‐
er. Many HTML5 features that may or may not be available in a certain browser can be
tested before being put to use.

Detecting the screen and window size with JavaScript and jQuery

JavaScript makes the width and height of the screen available in the screen.width and
screen.height properties. You can also use screen.availWidth and screen.avail
Height to get the available width and height, which accounts for pixels taken up by
toolbars and sidebar panels in the browser window.

116 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

If you are already using jQuery, you can use the width() method on any element on
your page to get its width, but you can also use it on the $(document) and $(window)
objects to get the width of the document and window, respectively. You can also use the
height() property on the document and window objects and any element on your page.

The values for $(window).width() and $(window).height() should be the same as
screen.availWidth and screen.availHeight, namely the available size of the browser
viewport minus any toolbars or sidebar panels, or more accurately how much room you
have for displaying HTML.

The width and height of the $(document) will return the total scrollable width and height
of your rendered web page.

When using the width and height in your JavaScript code, you will often want to update
things if the window size changes. This can happen if someone resizes a browser window
on their desktop, rotates a phone from portrait to landscape, or any number of things
that could change the width or height of the window. jQuery offers an easy way to detect
these changes so you can update your layout accordingly:

//bind an event to run when the window is resized
jQuery(window).resize(function() {
width = jQuery(window).width();
height = jQuery(window).height();
//update your layout, etc
});

You can bind a resize event to any element, not just the full window. Elements on your
page might grow and contract as a user interacts with your page, possibly adding ele‐
ments through AJAX forms or dragging resizable elements on the screen, or otherwise
moving things around.

Feature detection in JavaScript
When building a modern app UI using HTML5 features, you will sometimes want to
detect if a certain HTML5 feature is unavailable so you can provide an alternative or
fallback. Mark Pilgrim’s Dive into HTML5 has a good list of general methods for de‐
tecting HTML5 features:

1. Check if a certain property exists on a global object (such as window or navigator).
2. Create an element, then check if a certain property exists on that element.
3. Create an element, check if a certain method exists on that element, then call the

method and check the value it returns.
4. Create an element, set a property to a certain value, then check if the property has

retained its value.

Responsive Design | 117

www.it-ebooks.info

http://diveintohtml5.info
http://www.it-ebooks.info/

If you only need to do one such detection, some of the examples on the Dive into HTML5
website will give you an idea of how to roll your own bit of detection. If you need to do
a lot of feature detection, a library like Modernizr.js will help.

To use Modernizr.js, grab the version of the script you need from the website (Modernizr
offers a tool on its site that will ask you which parts of the script you need and then
generate a minimized .js file containing only those bits) and place it in your theme or
plugin folder and enqueue it:

<?php
function sp_wp_footer_modernizr() {
 wp_enqueue_script(
 'modernizr',
 get_stylesheet_directory_uri() . '/js/modernizr.min.js'
);?>
 <script>
 //change search inputs to text if unsupported
 if(!Modernizr.inputtypes.search)
 jQuery('input[type=search]').attr('type', 'text');
 </script>
 <?php
}
add_action('wp_footer', 'sp_wp_footer_modernizr');
?>

The Modernizr documentation contains a list of features detectable with Modernizr.js.

jQuery also provides a similar set of checks limited to things that jQuery needs to check
itself through the jQuery.support object. If a check you are trying to do is done by
jQuery already, you can avoid the overhead of Modernizr.js by using the jQuery check.
A list of features flags set by jQuery.support can be found on the jQuery website:

jQuery(document).ready(function() {
 //only load AJAX code if AJAX is available
 if(jQuery.support.ajax)
 {
 //AJAX code goes here
 }
});

Device Detection in PHP
Device detection in PHP is based on the $_SERVER[‘HTTP_USER_AGENT’] global created
by PHP. This value is set by the browser itself and so is definitely not standardized, often
misleading, and potentially spoofed by web crawlers and other bots. It’s best to avoid
PHP-based browser detection if you can by making your code as standards based as
possible and using the CSS and JavaScript methods described for feature detection.

If you want a general idea of the kind of browser accessing your app, the user agent
string is the best we have.

118 | Chapter 4: Themes

www.it-ebooks.info

http://modernizr.com
http://bit.ly/modern-doc
http://bit.ly/jquery-doc
http://www.it-ebooks.info/

Here is a simple test script echoing the user agent string and an example of what one
will look like:

<?php
echo $_SERVER['HTTP_USER_AGENT'];

/*
 Outputs something like:
 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36
*/
?>

This user agent string includes some useful information, but perhaps too much. There
are no fewer than five different browser names in that string. So which browser is it?
Mozilla, KHTML, Gecko, Chrome, or Safari? In this case, I was running Chrome on a
MacBook Air running OS X.

Did I already mention that there is no standard for the user agent string browsers will
send? Historically, browsers include the names of older browsers to basically say, “I can
do everything this browser does, too.”

A funny summary of the history of various user agent strings can be found at We‐
bAIM, including this bit explaining the pedigree of the Chrome browser.

And then Google built Chrome, and Chrome used Webkit, and it was like Safari, and
wanted pages built for Safari, and so pretended to be Safari. And thus Chrome used
WebKit, and pretended to be Safari, and WebKit pretended to be KHTML, and KHTML
pretended to be Gecko, and all browsers pretended to be Mozilla, and Chrome called
itself Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13
(KHTML, like Gecko) Chrome/0.2.149.27 Safari/525.13, and the user agent string was a
complete mess, and near useless, and everyone pretended to be everyone else, and con‐
fusion abounded.

— Aaron Anderson

Browser detection in WordPress core
Luckily, WordPress has done a bit of the work behind parsing the user agent string and
exposes some global variables and a couple of methods that cover the most common
browser detection–related questions.

The following globals are set by WordPress in wp-includes/vars.php:

• $is_lynx
• $is_gecko
• $is_winIE
• $is_macIE

Responsive Design | 119

www.it-ebooks.info

http://bit.ly/webaim-history
http://bit.ly/webaim-history
http://www.it-ebooks.info/

• $is_opera
• $is_NS4
• $is_safari
• $is_chrome
• $is_iphone
• $is_IE

And for detecting certain servers, we have the following:

• $is_apache
• $is_IIS
• $is_iis7

Finally, you can use the wp_is_mobile() function, which checks for the word “mobile”
in the user agent string as well as a few common mobile browsers.

Here is a quick example showing how you might use these globals to load different
scripts and CSS:

<?php
function sp_init_browser_hacks() {
 global $is_IE;
 if ($is_IE) {
 //check version and load CSS
 $user_agent = strtolower($_SERVER['HTTP_USER_AGENT']);
 if (strpos('msie 6.', $user_agent) !== false &&
 strpos('opera', $user_agent) === false) {
 wp_enqueue_style(
 'ie6-hacks',
 get_stylesheet_directory_uri() . '/css/ie6.css'
);
 }
 }

 if (wp_is_mobile()) {
 //load our mobile CSS and JS
 wp_enqueue_style(
 'sp-mobile',
 get_stylesheet_directory_uri() . '/css/mobile.css'
);
 wp_enqueue_script(
 'sp-mobile',
 get_stylesheet_directory_uri() . '/js/mobile.js'
);
 }
}

120 | Chapter 4: Themes

www.it-ebooks.info

http://www.it-ebooks.info/

add_action('init', 'sp_init_browser_hacks');
?>

Browser detection with PHP’s get_browser()

PHP actually has a great function for browser detection built in: get_browser(). Here
is a simple example calling get_browser() and displaying some typical results:

<?php
$browser = get_browser();
print_r($browser);

/*
 Would produce output like:

 stdClass Object (
[browser_name_regex] => §^mozilla/5\.0 \(.*intel mac os x.*\)
applewebkit/.* \(khtml, like gecko\).*chrome/28\..*safari/.*$§
[browser_name_pattern] => Mozilla/5.0 (*Intel Mac OS X*)
AppleWebKit/* (KHTML, like Gecko)*Chrome/28.*Safari/*
[parent] => Chrome 28.0
[platform] => MacOSX
[win32] =>
[comment] => Chrome 28.0
[browser] => Chrome
[version] => 28.0
[majorver] => 28
[minorver] => 0
[frames] => 1
[iframes] => 1
[tables] => 1
[cookies] => 1
[javascript] => 1
[javaapplets] => 1
[cssversion] => 3
[platform_version] => unknown
[alpha] =>
[beta] =>
[win16] =>
[win64] =>
[backgroundsounds] =>
[vbscript] =>
[activexcontrols] =>
[ismobiledevice] =>
[issyndicationreader] =>
[crawler] =>
[aolversion] => 0
)
*/

This is pretty amazing stuff! So why is this function last in the section on detecting a
browser with PHP? The answer is that the get_browser() function is unavailable or

Responsive Design | 121

www.it-ebooks.info

http://www.it-ebooks.info/

out of date on most servers. To get the function to give you useful information, or in
most cases work at all, you need to download an up-to-date browscap.ini file and con‐
figure PHP to find it. If you are distributing your app, you’ll want to use a different
method to detect browser capabilities. However, if you are running your own app on
your own servers, get_browser() is fair game.

An up-to-date browscap.ini file can be found at the Browser Capabilities Project web‐
site. Make sure you get one of the files formatted for PHP. We recommend the
lite_php_browscap.ini file, which is half the size but contains info on the most popular
browsers.

Once you have the .ini file on your server, you’ll need to update your php.ini file to point
to it. Your php.ini file probably has a line for browscap commented out. Uncomment it
and make sure it’s pointing to the location of the .ini file you downloaded. It should look
something like this:

[browscap]
browscap = /etc/lite_php_browscap.ini

Now restart your web server (apache, Nginx, etc.) and get_browser() should be
working.

Final Note on Browser Detection
We spent a lot of space here on browser detection, but in practice it should be used as
a last resort. When a certain browser is giving you pain with a piece of design or func‐
tionality, it is tempting to try to detect it and code around it. However, if it’s possible to
find another workaround that gets a similar result without singling out specific brows‐
ers, it’s usually better to go with that solution.

For one, as we’ve seen here, the user agent string has no standards, and your code to
parse it may have to be updated regularly to account for new browsers and browser
versions.

Second, in some cases, a browser-specific issue is a symptom of a bigger problem in
your code. There may be a way to simplify your design or functionality to work better
across multiple browsers, devices, and screen sizes.

The goal with responsive design and programming is to build something that will be
flexible enough to account for all of the various browsers and clients accessing your app,
whether you know about them or not.

Versioning CSS and JS Files
When you call wp_enqueue_script() or wp_enqueue_style(), you can pass a version
number. This version number is tacked on to the end of the filename and prevents the

122 | Chapter 4: Themes

www.it-ebooks.info

http://bit.ly/browsercap
http://bit.ly/browsercap
http://www.it-ebooks.info/

browser or web client from using a cached version of the script or stylesheet when the
version is updated. For example, here is the wp_enqueue_style() call from our pre‐
ceding Bootstrap example and the HTML generated by it:

<?php
// load our stylesheet
wp_enqueue_style(
 'bootstrap',
 get_stylesheet_directory_uri() . '/bootstrap/css/bootstrap.min.css',
 'style',
 '3.0'
);

// and this shows up in the head section of the site (note the 3.0)
/*
<link rel='stylesheet'
id='bootstrap-css'
href='/wp-content/themes/startbox-child/bootstrap/css/bootstrap.min.css?ver=3.0'
type='text/css'
media='all' />
*/

A good idea is to define a constant to store the version of your plugin, theme, or app
and use that as the version parameter to your enqueue calls. That way you only have to
update your version in one place if you’ve done a lot of work.

There is, however, one stylesheet that you won’t be able to version this way and that is
the style.css found in your theme or child theme. This stylesheet is automatically en‐
queued by WordPress, and the version attached to it is the version of WordPress you
are running.

You don’t want to update the WordPress version every time you update your theme, but
you do want to update the version of style.css if you change that file. There are two ways
to get around this issue:

1. You can empty out your style.css and load all of your stylesheets through wp_en
queue_stylesheet calls. This way you can specify your own version.

2. You can use the wp_default_styles action to change the default version used when
enqueueing a stylesheet without a set version. The $styles object is passed by
reference to this action, and so you only need to edit the object itself and don’t need
to (and really shouldn’t) return the $styles object like you would in a typical filter:

function sp_wp_default_styles($styles)
{
 //use our app version constant
 $styles->default_version = SCHOOLPRESS_VERSION;
}
add_action("wp_default_styles", "sp_wp_default_styles");

Versioning CSS and JS Files | 123

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Custom Post Types, Post Metadata,
and Taxonomies

Custom post types (CPTs) are what really make WordPress a content management sys‐
tem. With CPTs, you can quickly build out custom functionality and store data in a
consistent way.

Default Post Types and Custom Post Types
With a default installation of WordPress, you have several post types already being used.
The post types you may be most familiar with are pages and posts, but there are a few
more. These post type values are all stored in the database wp_posts table, and they all
use the post_type field to separate them.

Page
WordPress pages are what you use for your static content pages like home, about, contact
info, bio, or any custom page you want. Pages can be indefinitely nested under each
other in any hierarchical structure. Pages can also be sorted by menu_order value.

Post
Your posts are your blog or news or whatever you want to call your constant barrage of
content to be indexed by search engines on the Internet. You can categorize your posts,
tag them with keywords, set publish dates, and more. In general, posts are shown in
some kind of list view in reverse chronological order on the frontend of your website.

125

www.it-ebooks.info

http://www.it-ebooks.info/

Attachment
Any time you upload an image or file to a post, it stores the file not only on the server
but also as a post in the wp_posts table with a post_type attachment.

Revisions
WordPress has your back and saves your posts as revisions every time you or anyone
edits a post. This feature is on by default and can be used to revert your content back to
what it was if something got messed up along the way.

Sometimes the wp_posts table gets flooded with post revisions if your application is set
up to make a lot of post_content changes, so you may want to limit the amount of
revisions stored in the wp_posts table. To do this, put the following code in your wp-
config.php file: define('WP_POST_REVISIONS', 5); The number 5 is the number of
revision posts to store for a given post. A value of 0 will turn off post revisions. A value
of true or -1 will store an infinite number of revisions (it can take a lot of disk space to
store infinity something).

Nav Menu Item
Every time you build a custom menu using the WordPress core menu builder (wp-
admin → appearance → menus) you are storing posts with information for your menus.

Defining and Registering Custom Post Types
Just like the default WordPress post types, you can create your own CPTs to manage
any data you need, depending on what you are building. Every CPT is really just a post
used differently. You could register a custom post type for a dinner menu at a restaurant,
for cars for an auto dealer, for people to track patient information and documents at a
doctors office, or for pretty much anything you can think of. No, really any type of
content you can think of can be stored as a post with attached files, custom metadata,
and custom taxonomies.

In our SchoolPress example, we are going to be building a CPT for managing homework
assignments on a teacher’s website. Our teacher wants to make a post of some kind
where he can add assignments and their students can get to them on the class website.
He also wants to be able to upload supporting documents and have commenting avail‐
able in case any of his students has questions. A CPT sounds in order, doesn’t it?

We can store this information the same way posts are dealt with and display them to
the end user in the theme using the same wp_query loop we would with posts.

126 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

register_post_type($post_type, $args);
You can register a CPT with the function register_post_type(), and in most cases,
you are going to register your CPT in your theme’s functions.php file or in a custom
plugin file. This function expects two parameters: the name of the post type you are
creating and an array of arguments:

• $post_type—The name of your custom post type; in our example, our custom post
type name is “homework.” This string must be no longer than 20 characters and
can’t have capital letters, spaces, or any special characters except a hyphen or an
underscore.

• $args—This is an array of many different arguments that will dictate how your
custom post type will be set up. The following is a list of all of the available arguments
and what they are used for.

label
The display name of your post type. In our example, we use “Homework.”

labels
An optional array of labels to use for describing your post type throughout the user
interface:

• name—The plural display name of your post type. This will override the label ar‐
gument.

• singular_name—The singular name for any particular post. This defaults to the
name if not specified.

• add_new—Defaults to the string “Add New.”
• add_new_item—Defaults to “Add New Post.”
• edit_item—Defaults to “Edit Post.”
• new_item—Defaults to “New Post.”
• view_item—Defaults to “View Post.”
• search_items—Defaults to “Search Posts.”
• not_found—Defaults to “No Posts Found.”
• not_found_in_trash—Defaults to “No posts found in Trash.”
• parent_item_colon—Defaults to “Parent Page:” and is only used on hierarchical

post types.
• all_items—Defaults to “All Posts.”

Defining and Registering Custom Post Types | 127

www.it-ebooks.info

http://www.it-ebooks.info/

menu_name

The menu name for the post type, usually the same as label or labels->name.

description
An optional string that describes your post type.

publicly_queryable
An optional Boolean that specifies if queries on your post type can be run on the frontend
or theme of your application. By default, publicly_queryable is turned on.

exclude_from_search
An optional Boolean that specifies if your post type posts can be queried and displayed
in the default WordPress search results. This is off by default so that your posts will be
searchable.

capability_type

An optional string or array. If not specifically defined, capability_type will default to
post. You can pass in a string of an existing post type, and the new post type you are
registering will inherit that post type’s capabilities. You can also define your own capa‐
bility type, which will set default capabilities for your custom post type for reading,
publishing, editing, and deleting. You can also pass in an array if you want to use different
singular and plural words for your capabilities. For example, you can just pass in the
string “homework” since the singular and plural forms for “homework” are the same,
but you would pass in an array like array('submission', 'submissions') when
the forms are different.

capabilities
An optional array of the capabilities of the post type you are registering. You can use
this instead of capability_type if you want more granular control over the capabilities
you are assigning to your new custom post type.

There are two types of capabilities: meta and primitive. Meta capabilities are tied to
specific posts, whereas primitive capabilities are more general purpose. In practice, this
means that when checking if a user has a meta capability, you must pass in a $post_id
parameter:

//meta capabilities are related to specific posts
if(current_user_can("edit_post", $post_id))
{
 //the current user can edit the post with ID = $post_id
}

Unlike meta capabilities, primitive capabilities aren’t checked against a specific post:

128 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

//primitive capabilities aren't related to specific posts
if(current_user_can("edit_posts"))
{
 //the current user can edit posts in general
}

The capabilities that can be assigned to your custom post type are:

• edit_post—A meta capability for a user to edit a particular post.
• read_post—A meta capability for a user to read a particular post.
• delete_post—A meta capability for a user to delete a particular post.
• edit_posts—A primitive capability for a user to be able to create and edit posts.
• edit_others_posts—A primitive capability for a user to be able to edit others’ posts.
• publish_posts—A primitive capability for a user to be able to publish posts.
• read_private_posts—A primitive capability for a user to be able to read private posts.
• read—A primitive capability for a user to be able to read posts.
• delete_posts—A primitive capability for a user to be able to delete posts.
• delete_private_posts—A primitive capability for a user to be able to delete private

posts.
• delete_published_posts—A primitive capability for a user to be able to delete posts.
• delete_others_posts—A primitive capability for a user to be able to delete other

peoples posts.
• edit_private_posts—A primitive capability for a user to be able to edit private posts.
• edit_published_posts—A primitive capability for a user to be able to publish posts.

map_meta_cap
Whether to use the internal default meta capability handling (capabilities and roles are
covered in Chapter 6). Defaults to false. You can always define your own capabilities
using capabilities; but if you don’t, setting map_meta_cap to true will make the fol‐
lowing primitive capabilities be used by default or in addition to using capabili
ty_type:

• read
• delete_posts
• delete_private_posts
• delete_published_posts
• delete_others_posts

Defining and Registering Custom Post Types | 129

www.it-ebooks.info

http://www.it-ebooks.info/

• edit_private_posts
• edit_published_posts

hierarchical
An optional Boolean that specifies if a post can be hierarchical and have a parent post
or not. WordPress pages are set up like this so you can nest pages under other pages.
The hierarchical argument is turned off by default.

public
An optional Boolean that specifies if a post type is supposed to be used publicly or not
in the backend or frontend of WordPress. By default, this argument is false; so without
including this argument and setting it to true, you wouldn’t be able to use this post_type
in your theme. If you set public to true, it will automatically set ex

clude_from_search, publicly_queryable and show_ui_nav_menus to true unless
otherwise specified.

Most CPTs will be public so they are shown on the frontend or available to manage
through the WordPress dashboard. Other CPTs (like the default Revisions CPT) are
updated behind the scenes based on other interactions with your app and would have
public set to false.

rewrite
An optional Boolean or array used to create a custom permalink structure for a post
type. By default, this is set to true, and the permalink structure for a custom post
is /post_type/post_title/. If set to false, no custom permalink would be created.
You can completely customize the permalink structure of a post by passing in an array
with the following arguments:
slug

Defaults to the post_type but can be any string you want. Remember not to use
the same slug in more than one post type because they have to be unique.

with_front
Whether or not to prepend the “front base” to the front of the CPT permalink. If
set to true, the slug of the “front page” set on the Settings → Reading page of the
dashboard will be added to the permalink for posts of this post type.

feeds
Boolean that specifies if a post type can have an RSS feed. The default value of this
argument is set to the value of the has_archive argument. If feeds is set to
false, no feeds will be available.

130 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

pages
Boolean that turns on pagination for a post type. If true, archive pages for this post
type will support pagination.

ep_mask
EP or endpoints can be very useful. With this argument you assign an endpoint
mask for a post type. For instance, we could set up an endpoint for a post type of
homework called “pop-quiz.” The permalink would look like /homework/post-
title/pop-quiz/. In MVC terminology, a CPT is similar to a module, and end‐
points can be thought of as different views for that module. Endpoints and other
rewrite functions are covered in Chapter 7.

has_archive
An optional Boolean or string that specifies if a post type can have an archive page or
not. By default this argument is set to false, so you will want to set it to true if you
would like to use it in your theme. The archive-{post_type}.php file in your theme will
be used to render the archive page. If that file is not available, the archive.php or in‐
dex.php file will be used instead.

query_var

An optional Boolean or string that sets the query_var key for the post type. This is the
name of your post type in the database and used when writing queries to work with this
post type. The default value for this argument is set to the value of post_type argument.
In most cases you wouldn’t need your query_var and your post_type to be different,
but you can imagine a long post type name like directory_entry that you would want
to use a shorter slug like “dir” for.

supports
An optional Boolean or array that specifies what meta box features will be made available
on the new post or edit post page. By default, an array with the arguments of title and
editor are passed in. The following is a list of all of the available arguments:

• title
• editor
• comments
• revisions
• trackbacks
• author
• excerpt

Defining and Registering Custom Post Types | 131

www.it-ebooks.info

http://www.it-ebooks.info/

• page-attributes
• thumbnail
• custom-fields
• post-formats

If you plan to use one of these features with your CPT, make sure it is included in the
supports array.

register_meta_box_cb
An optional string that allows you to provide a custom callback function for integrating
your own custom meta boxes.

permalink_epmask
An optional string for specifying which endpoint types you would like to associate with
a custom post type. The default rewrite endpoint bitmask is EP_PERMALINK. For more
information on endpoints, see Chapter 7.

taxonomies
An optional array that specifies any built-in (categories and tags) or custom registered
taxonomies you would like to associate with a post type. By default, no taxonomies are
referenced. For more information on taxonomies, please see “Creating Custom Taxon‐
omies” on page 137.

show_ui
An optional Boolean that specifies if the basic post UI will be made available for a post
type in the backend. The default value is set to the value of the public argument. If
show_ui is false, you will have no way of populating your posts from the backend
admin area.

It’s a good idea to set show_ui to true, even for CPTs that won’t
generally be added or edited through the admin dashboard. For ex‐
ample, the bbPress plugin adds Topics and Replies as CPTs that are
added and edited through the forum UI on the frontend. However,
show_ui is set to true, providing another interface for admins to
search, view, and manage topics and replies from.

menu_position
An optional integer used to set the menu order of a post type menu item in the backend,
left-side navigation.

132 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

The WordPress Codex provides a nice list of common menu position values to help you
figure out where to place the menu item for your CPT:

• 5—below Posts
• 10—below Media
• 15—below Links
• 20—below Pages
• 25—below comments
• 60—below first separator
• 65—below Plugins
• 70—below Users
• 75—below Tools
• 80—below Settings
• 100—below second separator

menu_icon
An optional string of a URL to a custom icon that can be used to represent a post type.

can_export
An optional Boolean that specifies if a post type can be exported via the WordPress
exporter in Tools → Export. This argument is set to true by default, allowing the admin
to export.

show_in_nav_menus
An optional Boolean that specifies if posts from a post type can be added to a custom
navigation menu in Apperance → Menus. The default value of this argument is set to
the value of the public argument.

show_in_menu
An optional Boolean or string that specifies whether to show the post type in the backend
admin menu and possibly where to show it. If set to true, the post type is displayed as
its own item on the menu. If set to false, no menu item for the post type is shown. You
can also pass in a string of the name of any other menu item. Doing this will place the
post type in the submenu of the passed-in menu item. The default value of this argument
is set to the value of the show_ui argument.

Defining and Registering Custom Post Types | 133

www.it-ebooks.info

http://bit.ly/reg-post-type
http://www.it-ebooks.info/

show_in_admin_bar
An optional Boolean that specifies if a post type is available in the WordPress admin
bar. The default value of this argument is set to the value of the show_in_menu argument.

delete_with_user
An optional Boolean that specifies whether to delete all of the posts for a post type
created by any given user. If set to true, posts the user created will be moved to the trash
when the user is deleted. If set to false, posts will not be moved to the trash when the
user is deleted. By default, posts are moved to the trash if the argument post_type_sup
ports has author within it. If not, posts are not moved to the trash.

_builtin
You shouldn’t ever need to use this argument. Default WordPress post types use this to
differentiate themselves from custom post types.

_edit_link
The URL of the edit link on the post. This is also for internal use, and you shouldn’t
need to use it. If you’d like to change the page linked to when clicking to edit a post, use
the get_edit_post_link filter, which passes the default edit link along with the ID of
the post.

Example 5-1 illustrates registering new homework and submissions custom post types
using register_post_type(). You can find the code for the register_post_type()
function in wp-includes/post.php. Notice that in our example we are only using a few of
the many available arguments.

Example 5-1. Registering a custom post type
<?php
// custom function to register a "homework" post type
function schoolpress_register_post_type_homework() {
 register_post_type('homework',
 array(
 'labels' => array(
 'name' => __('Homework'),
 'singular_name' => __('Homework')
),
 'public' => true,
 'has_archive' => true,
)
);
}
// call our custom function with the init hook
add_action('init', 'schoolpress_register_post_type_homework');

// custom function to register a "submissions" post type

134 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

function schoolpress_register_post_type_submission() {
 register_post_type('submissions',
 array(
 'labels' => array(
 'name' => __('Submissions'),
 'singular_name' => __('Submission')
),
 'public' => true,
 'has_archive' => true,
)
);
}
// call our custom function with the init hook
add_action('init', 'schoolpress_register_post_type_submission');
?>

If you dropped the preceding code in your active theme’s functions.php file or an active
plugin, you should notice two new menu items on the WordPress admin called “Home‐
work” and “Submissions” under the “Comments” menu item.

If you get tired of writing your own functions to register the various
custom post types that you want to use, you can use this cool plugin
called Custom Post Types UI.

What Is a Taxonomy and How Should I Use It?
We briefly touched on taxonomies in Chapter 2, but what exactly is a taxonomy? Tax‐
onomies group posts by terms. Think post categories and post tags; these are just built-
in taxonomies attached to the default “post” post type. You can define as many custom
taxonomies or categories as you want and span them across multiple post types. For
example, we can create a custom taxonomy called “Subject” that has all school-related
subjects as its terms and is tied to our “Homework” custom post type.

Taxonomies Versus Post Meta
One question you will tackle often when you want to attach bits of data to posts is
whether to use a taxonomy or a post meta field (or both). Generally, terms that group
different posts together should be coded as taxonomies, while data that is specific to
each individual post should be coded as post meta fields.

Post meta fields are good for data that is specific to individual posts and not used to
group posts together. In SchoolPress, it makes sense to code things like required as‐
signment length (e.g., 500 words) as a meta field. In practice, there are only going to be
a few different lengths used, but we won’t ever need to “get all assignments that require
500 words.” So a post meta field is adequate for this information.

What Is a Taxonomy and How Should I Use It? | 135

www.it-ebooks.info

http://bit.ly/posttype-ui
http://www.it-ebooks.info/

Taxonomies are good for data that is used to group posts together. In SchoolPress, it
makes sense to code things like an assignment’s subject (e.g., math or English) as a
taxonomy. Unlike assignment length, we will want to run queries like “get all Math
assignments.” This is easily done through a taxonomy query. More importantly, queries
like this will run faster on taxonomy data than they do on meta fields.

Why are taxonomy queries generally faster? Meta fields are stored in the wp_postme
ta. If we were storing an assignment’s due date as a post meta field, it would look
like this:

meta_id post_id meta_key meta_value

1 1 due_date 2014-09-07

2 2 due_date 2014-09-14

The meta_id, post_id, and meta_key columns are indexed, but the meta_value column
is not. This means that queries like “get the due date for this assignment” will run quickly,
but queries like “get all assignments due on 2014-09-07” will run slower, especially if
you have a large site with lots of data piled into the wp_postmeta table. The reason the
meta_value key is the lone column in wp_postmeta without an index is that adding an
index here would greatly increase both the storage required for this table and also the
insert times. In practice, a site is going to have many different meta values, whereas
there will be a smaller set of post IDs and meta keys to build indexes for.

If you stored assignment due dates in a custom taxonomy, the “get all assignments due
on this date” query will run much faster. Each specific due date would be a term in the
wp_terms table with a corresponding entry in the wp_terms_taxonomy table. The
wp_terms_relationships table that attaches terms to posts has both the object_id
(posts are objects here) and term_taxonomy_id fields indexed. So “get all posts with this
term_taxonomy_id” is a speedy query.

If you just want to show the due date on the assignment page, you should store it in the
post meta fields. If you want to offer a report of all assignments due on a certain date,
you should consider adding a taxonomy to track due dates.

On the other hand, due to the nature of due dates (you potentially have 365 new terms
each year), using a taxonomy for them might be overkill. You would end up with a lot
of useless terms in your database keeping track of which assignments were due two years
ago.

Also, in this specific case, the speed increases might be negligible because the due date
report is for a subset of assignments within a specific class group. In practice, we won’t
be querying for assignments by due date across the entire wp_postmeta table. We’ll filter
the query to only run on assignment posts for a specific class. While there may be
millions and millions of rows in the wp_postmeta table for a SchoolPress site at scale

136 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

(hundreds of schools, thousands of teachers and classes), there are only going be a few
assignments for a specific class or group of classes one student is in.

Another consideration when choosing between meta fields and taxonomies is how that
data is going to be managed by users.

If a field is only going to be used in the backend code, and you don’t have query speed
issues, storing it in post meta is as simple as one call to update_post_meta().

If you’d like admins to be able to create new terms, write descriptions for them, build
hierarchies, and use dropdowns or checkboxes to assign them to posts, well then I’ve
just described exactly what you get for free when you register a taxonomy. When using
post meta fields, you need to build your own UI into a meta box.

Finally, I did mention earlier that there are times when you want to use both a meta field
and a taxonomy to track one piece of data. An example of this in the context of the
SchoolPress app could be tracking a textbook and chapter for an assignment. Imagine
you want a report for a student with all of her assignments organized by textbook and
ordered by chapter within those books.

Because you want to allow teachers to manage textbooks as terms in the admin, and
you will want to do queries like “get all assignments for this textbook,” it makes sense
to store textbooks in a custom taxonomy.

On the other hand, chapters can be stored in post meta fields. Chapters are common
across books and assignments, but it doesn’t make sense to query for “all chapter 1
assignments” across many different textbooks. Since we’ll be able to pre-filter to get all
assignments by textbook or by student, we can use a chapter meta field, or possibly a
textbook_chapter meta field with data like “PrinciplesOfMath.Ch1” to order the as‐
signments for the report.

Phew… now that we’ve figured out when we’ll want to use taxonomies, let’s find out
how to create them.

Creating Custom Taxonomies
You can register your own taxonomies with the function register_taxonomy(), which
is found in wp-includes/taxonomy.php.

register_taxonomy($taxonomy, $object_type, $args)
The register_taxonomy() function accepts the following three parameters:

• $taxonomy—A required string of the name of your taxonomy. In our example, our
taxonomy name is “subject.”

What Is a Taxonomy and How Should I Use It? | 137

www.it-ebooks.info

http://www.it-ebooks.info/

• $object_type—A required array or string of the custom post type(s) you are at‐
taching this taxonomy to. In our example, we are using a string and attaching the
subject taxonomy to the homework post type. We could set it to more that one post
type by passing in an array of post type names.

• $args—This is an optional array of many different arguments that dictate how your
custom taxonomy will be set up. Notice that in our example we are only using a few
of the many available arguments that could be passed into the register_taxono
my() function. Below is a list of all of the available arguments:

label
Optional string of the display name of your taxonomy.

labels
Optional array of labels to use for describing your taxonomy throughout the user in‐
terface:
name

The plural display name of your taxonomy. This will override the label argument.

singular_name
The name for one object of this taxonomy. Defaults to “Category.”

search_items
Defaults to “Search Categories”.

popular_items
This string isn’t used on hierarchical taxonomies. Defaults to “Popular Tags.”

all_items
Defaults to “All Categories”.

parent_item
This string is only used on hierarchical taxonomies. Defaults to “Parent Category.”

parent_item_colon
The same as the parent_item argument but with a colon at the end.

edit_item
Defaults to “Edit Category.”

view_item
Defaults to “View Category.”

update_item
Defaults to “Update Category.”

138 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

add_new_item
Defaults to “Add New Category.”

new_item_name
Defaults to “New Category Name.”

separate_items_with_commas
This string is used on nonhierarchical taxonomies. Defaults to “Separate tags with
commas.”

add_or_remove_items
This string is used on nonhierarchical taxonomies. Defaults to “Add or remove tags.”

choose_from_most_used
This string is used on nonhierarchical taxonomies. Defaults to “Choose from the
most used tags.”

hierarchical
Optional Boolean that specifies if a taxonomy is hierarchical or that a taxonomy term
may have parent terms or subterms. This is just like the default categories taxonomy.
Nonhierarchical taxonomies are like the default tags taxonomy. The default value for
this argument is set to false.

update_count_callback
Optional string that works like a hook. It’s called when the count of the associated post
type is updated.

rewrite
Optional Boolean or array that is used to customize the permalink structure of a taxon‐
omy. The default rewrite value is set to the taxonomy slug.

query_var

Optional Boolean or string that can be used to customize the query var, ?$query_var=
$term. By default, the taxonomy name is used as the query var.

public
Optional Boolean that specifies if the taxonomy should be publicly queryable on the
frontend. The default is set to true.

What Is a Taxonomy and How Should I Use It? | 139

www.it-ebooks.info

http://www.it-ebooks.info/

show_ui
Optional Boolean that specifies if the taxonomy will have a backend admin UI, similar
to the categories or tags interface. The default value of this argument is set to the value
of the public argument.

show_in_nav_menus
Optional Boolean that specifies if a taxonomy will be available in navigation menus. The
default value of this argument is set to the value of the public argument.

show_tagcloud
Optional Boolean that specifies if the taxonomy can be included in the Tag Cloud
Widget. The default value of this argument is set to the value of the show_ui argument.

show_admin_column
Optional Boolean that specifies if a new column will be created for your taxonomy on
the post type it is attached to on the post type’s edit/list page in the backend. This is
false by default.

capabilities

Optional array of capabilities for this taxonomy with a default of none. You can pass in
the following arguments and/or any custom-created capabilities:

• manage_terms
• edit_terms
• delete_terms
• assign_terms

In our homework post type example, we are going to make a taxonomy called “Subject”
so we can create a term for each subject like math, science, language arts, and social
studies:

<?php
// custom function to register the "subject" taxonomy
function schoolpress_register_taxonomy_subject() {
 register_taxonomy(
 'subject',
 'homework',
 array(
 'label' => __('Subjects'),
 'rewrite' => array('slug' => 'subject'),
 'hierarchical' => true
)
);

140 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

}
// call our custom function with the init hook
add_action('init', 'schoolpress_register_taxonomy_subject');
?>

Notice in the preceding code the subject taxonomy is set up like categories on a post
because it’s hierarchical argument is set to true. You can create as many subjects as you
would like and nest them under each other.

Under Homework → Subjects in the backend, you can add your terms the same way
you would add new categories to a post.

register_taxonomy_for_object_type($taxonomy, $object_type)
What if you wanted to use a default taxonomy on a custom post type? Say you want to
use the same tags taxonomy attached to the posts post type on our homework post type.
You can use the register_taxonomy_for_object_type() function to attach any tax‐
onomies to any post types. The register_taxonomy_for_object_type() function is
also located in wp-includes/taxonomy.php.

The register_taxonomy_for_object_type() function accepts two parameters:

• $taxonomy—Required string of the name of the taxonomy.
• $object_type—Required string of the name of the post type to which you want to

attach your taxonomy.

In this example, we are attaching the default tags taxonomy to our custom homework
post type:

<?php
function schoolpress_register_taxonomy_for_object_type_homework(){
 register_taxonomy_for_object_type('post_tag', 'homework');
}
add_action('init', 'schoolpress_register_taxonomy_for_object_type_homework');
?>

If you run the example, you should notice that the “tags” taxonomy is now available
under the Homework menu item. The Custom Post Types UI plugin also has a UI for
creating and managing custom taxonomies.

Using Custom Post Types and Taxonomies in Your Themes
and Plugins
Most of the time when building a web application with WordPress, you will want to
display your custom post type posts in the frontend within your theme.

Using Custom Post Types and Taxonomies in Your Themes and Plugins | 141

www.it-ebooks.info

http://bit.ly/posttype-ui
http://www.it-ebooks.info/

The Theme Archive and Single Template Files
Most WordPress themes will have an archive.php file that renders your posts on a
archive/listing page and a single.php file that is responsible for rendering information
about a single post. You can create dedicated archive and single files for your registered
CPTs very easily.

Make a copy of archive.php and name it archive-homework.php. You should now auto‐
matically have a listing archive page of all of your homework assignment posts in the
same format of your regular posts archive page (at domain.com/homework/).

This same method can be applied to the single.php file. Make a copy if it and call it single-
homework.php. You should now have a single page for each of your homework assign‐
ments (at domain.com/homework/science-worksheet/). Now you can change the markup
of the CPT archive or single file to display your data differently from how your blog
posts are displayed.

In order to use a custom archive file, you must set the has_archive
argument when registering your custom post type to true. The
has_archive argument is part of the register_post_type() func‐
tion.

Good Old WP_Query and get_posts()
In some instances, creating an archive and single .php file for your custom post type
may not be enough for the custom functionality you require. What if you wanted to
loop through all of the posts for a specific post type in a sidebar widget or in a shortcode
on a page? With WP_Query or get_posts(), you can set the post_type parameter to
query and loop through your CPT posts the same way you would with regular posts.

In Example 5-2, we will build a homework submission form below any content provided
for the single post of the homework post type.

Example 5-2. Homework submission form
<?php
function schoolpress_the_content_homework_submission($content){

 global $post;

 // Don't do this for any other post type than homework
 // and if a user is not logged in
 $current_user = wp_get_current_user();
 if (! is_single() || $post->post_type != 'homework' || ! $current_user)
 return $content;

 // check if the current user has already made a submission to this

142 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

 // homework assignment
 $submissions = get_posts(array(
 'post_author' => $current_user->ID,
 'posts_per_page' => '1',
 'post_type' => 'submissions',
 'meta_key' => '_submission_homework_id',
 'meta_value' => $post->ID
));
 foreach ($submissions as $submission) {
 $submission_id = $submission->ID;
 }

 // Process the form submission if the user hasn't already
 if (!$submission_id &&
 isset($_POST['submit-homework-submission']) &&
 isset($_POST['homework-submission'])) {

 $submission = $_POST['homework-submission'];
 $post_title = $post->post_title;
 $post_title .= ' - Submission by ' . $current_user->display_name;
 // Insert the current users submission as a post into our
 // submissions CPT.
 $args = array(
 'post_title' => $post_title,
 'post_content' => $submission,
 'post_type' => 'submissions',
 'post_status' => 'publish',
 'post_author' => $current_user->ID
);
 $submission_id = wp_insert_post($args);
 // add post meta to tie this submission post to the
 // homework post
 add_post_meta($submission_id, '_submission_homework_id',
 $post->ID);
 // create a custom message
 $message = __(
 'Your homework has been submitted and is
 awaiting review.',
 'schoolpress'
);
 $message = '<div class="homework-submission-message">' . $message .
 '</div>';
 // drop message before the filtered $content variable
 $content = $message . $content;
 }

 // Add a link to the user's submission if a submssion was already made
 if($submission_id) {

 $message = sprintf(__(
 'Click %s here %s to view your submission to this homework
 assignment.',

Using Custom Post Types and Taxonomies in Your Themes and Plugins | 143

www.it-ebooks.info

http://www.it-ebooks.info/

 'schoolpress'),
 '',
 '');
 $message = '<div class="homework-submission-link">' . $message .
 '</div>';
 $content .= $message;

 // Add a basic submission form after the $content variable being filtered.
 } else {

 ob_start();
 ?>
 <h3><?php _e('Submit your Homework below!', 'schoolpress');?></h3>
 <form method="post">
 <?php
 wp_editor('', 'homework-submission', array('media_buttons' => false));
 ?>
 <input type="submit" name="submit-homework-submission" value="Submit" />
 </form>
 <?php
 $form = ob_get_contents();
 ob_end_clean();
 $content .= $form;
 }

 return $content;

}
// add a filter on 'the_content' so we can run our custom code to deal with
// homework submissions
add_filter('the_content', 'schoolpress_the_content_homework_submission', 999);
?>

You probably noticed the following functions that we haven’t discussed yet:

• ob_start()—This PHP function is used to turn output buffering on. While output
buffering is active, no output is sent to the browser; instead the output is stored in
an internal buffer.

• wp_editor()—This WordPress function outputs the same WYSIWYG editor that
you get while adding or editing a post. You can call this function anywhere you
would like to stick an editor. We thought the homework submission form would
be a perfect place. We will cover all of the parameters of this function later in
Chapter 7.

• ob_get_contents()—We set a variable called $form to this PHP function. This
makes all content between calling the ob_start() function and this function into
a variable called $form.

144 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

• ob_end_clean()—This PHP function clears the output buffer and turns off output
buffering.

We used these functions in the previous sequence because the wp_editor() function
does not currently have an argument to return the editor as a variable and outputs it to
the browser when it’s called. If we didn’t use these functions, we wouldn’t be able to put
our editor after the $content variable passed into the the_content filter.

In the following code, we are going to make sure that only administrators have access
to all homework submissions and that all other users only have access to homework
submissions that they made:

<?php
function schoolpress_submissions_template_redirect(){
 global $post, $user_ID;

 // only run this function for the submissions post type
 if ($post->post_type != 'submissions')
 return;

 // check if post_author is the current user_ID
 if ($post->post_author == $user_ID)
 $no_redirect = true;

 // check if current user is an administrator
 if (current_user_can('manage_options'))
 $no_redirect = true;

 // if $no_redirect is false redirect to the home page
 if (! $no_redirect) {
 wp_redirect(home_url());
 exit();
 }
}
// use the template_redirect hook to call a function that decides if the
// current user can access the current homework submission
add_action('template_redirect', 'schoolpress_submissions_template_redirect');
?>

Metadata with CPTs
You can utilize the same post meta functions we went over in detail in Chapter 2 with
any CPT you create. Getting, adding, updating, and deleting post metadata is consistent
across all posts types.

If you registered a CPT and added custom-fields in the supports argument, then by
default, when adding a new post or editing a post of that post type, you will see a meta
box called “Custom Fields.” You may already be familiar with the Custom Fields meta
box; it’s a very basic form used to maintain metadata attached to a post. What if you

Metadata with CPTs | 145

www.it-ebooks.info

http://www.it-ebooks.info/

require a more slick UI for adding metadata on the backend? Well, building a custom
meta box would be the solution for you.

add_meta_box($id, $title, $callback, $screen, $context, $priority,
$callback_args)

• $id—A required string of a unique identifier for the meta box you are creating.
• $title—A required string of the title or visible name of the meta box you are creating.
• $callback—A required string of a function name that gets called to output the

HTML inside of the meta box you are creating.
• $screen—An optional string or object of post types and/or screen names (dash‐

board, links) that your meta box will show up on.
• $context—An optional string of the context within the page where your meta box

should show (normal, advanced, side). The default is advanced.
• $priority—An optional string of the priority within the context where the boxes

should show (high, low).
• $callback_args—An optional array of arguments that will be passed in the callback

function you referenced with the $callback parameter. Your callback function will
automatically receive the $post object and any other arguments you set here.

In Example 5-3, we are going to build a custom meta box for all posts of our homework
post type. This meta box will contain a checkbox for if a homework submission is re‐
quired and a date selector for the due date of the homework assignment.

Example 5-3. Custom meta box
<?php
// function for adding a custom meta box
function schoolpress_homework_add_meta_boxes(){

 add_meta_box(
 'homework_meta',
 'Additonal Homework Info',
 'schoolpress_homework_meta_box',
 'homework',
 'side'
);

}
// use the add_meta_boxes hook to call a custom function to add a new meta box
add_action('add_meta_boxes', 'schoolpress_homework_add_meta_boxes');

// this is the callback function called from add_meta_box
function schoolpress_homework_meta_box($post){
 // doing this so the url will fit in the book ;)

146 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

 $jquery_url = 'http://ajax.googleapis.com/ajax/libs/';
 $jquery_url.= 'jqueryui/1.8.2/themes/smoothness/jquery-ui.css';

 // enqueue jquery date picker
 wp_enqueue_script('jquery-ui-datepicker');
 wp_enqueue_style('jquery-style', $jquery_url);

 // set meta data if already exists
 $is_required = get_post_meta($post->ID,
 '_schoolpress_homework_is_required', 1);

 $due_date = get_post_meta($post->ID,
 '_schoolpress_homework_due_date', 1);
 // output meta data fields
 ?>
 <p>
 <input type="checkbox"
 name="is_required" value="1" <?php checked($is_required, '1'); ?>>
 This assignment is required.
 </p>
 <p>
 Due Date:
 <input type="text"
 name="due_date" id="due_date" value="<?php echo $due_date;?>">
 </p>
 <?php // attach jquery date picker to our due_date field?>
 <script>
 jQuery(document).ready(function() {
 jQuery('#due_date').datepicker({
 dateFormat : 'mm/dd/yy'
 });
 });
 </script>
 <?php
}

// function for saving custom meta data to the database
function schoolpress_homework_save_post($post_id){

 // don't save anything if WP is auto saving
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE)
 return $post_id;

 // check if correct post type and that the user has correct permissions
 if ('homework' == $_POST['post_type']) {

 if (! current_user_can('edit_page', $post_id))
 return $post_id;

 } else {

 if (! current_user_can('edit_post', $post_id))

Metadata with CPTs | 147

www.it-ebooks.info

http://www.it-ebooks.info/

 return $post_id;
 }

 // update homework meta data
 update_post_meta($post_id,
 '_schoolpress_homework_is_required',
 $_POST['is_required']
);
 update_post_meta($post_id,
 '_schoolpress_homework_due_date',
 $_POST['due_date']
);

}
// call a custom function to handle saving our meta data
add_action('save_post', 'schoolpress_homework_save_post');
?>

If you are a good developer, you are probably thinking to yourself: Where are the nonces?
How come these $_POST values aren’t sanitized? If you aren’t thinking this, you should
be because security is very important! If you don’t know what we are talking about right
now, that’s OK because we will be covering these best practices in more detail in Chap‐
ter 8. We deliberately left out this additional code in our example to try to keep it short
and sweet, but know that when you are writing custom code, you should always use
nonces and sanitize your data.

When creating meta boxes and custom meta fields, we recommend
utilizing Custom Metaboxes and Fields for WordPress, or CMB for
short. You can easily include CMB in your theme or any custom
plugin to give you a fast and easy way to create custom meta boxes
and the meta fields inside them.

Custom Wrapper Classes for CPTs
CPTs are just posts. So you can use a call like get_post($post_id) to get an object of
the WP_Post class to work with. For complex CPTs, it helps to create a wrapper class
so you can interact with your CPT in a more object-oriented way.

The basic idea is to create a custom-defined PHP class that includes as a property a post
object generated from the ID of the CPT post. In addition to storing that post object,
the wrapper class also houses methods for all of the functionality related to that CPT.

Example 5-4 shows the outline of a wrapper class for our Homework CPT.

Example 5-4. Homework CPT wrapper class
<?php
/*

148 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://bit.ly/metaboxes-fields
http://www.it-ebooks.info/

 Class Wrapper for Homework CPT
 /wp-content/plugins/schoolpress/classes/class.homework.php
*/
class Homework {
 //constructor can take a $post_id
 function __construct($post_id = NULL) {
 if (!empty($post_id))
 $this->getPost($post_id);
 }

 //get the associated post and prepopulate some properties
 function getPost($post_id) {
 //get post
 $this->post = get_post($post_id);

 //set some properties for easy access
 if (!empty($this->post)) {
 $this->id = $this->post->ID;
 $this->post_id = $this->post->ID;
 $this->title = $this->post->post_title;
 $this->teacher_id = $this->post->post_author;
 $this->content = $this->post->post_content;
 $this->required = $this->post->_schoolpress_homework_is_required;
 $this->due_date = $this->post->due_date;
 }

 //return post id if found or false if not
 if (!empty($this->id))
 return $this->id;
 else
 return false;
 }
}
?>

The constructor of this class can take a $post_id as a parameter and will pass that to
the getPost() method, which attaches a $post object to the class instance and also
prepopulates a few properties for easy access. Example 5-5 shows how to instantiate an
object for a specific Homework assignment and print out the contents.

Example 5-5. Get and print a specific homework assignment
$assignment_id = 1;
$assignment = new Homework($assignment_id);
echo '<pre>';
print_r($assignment);
echo '</pre>';
//Outputs:
/*
Homework Object
(
 [post] => WP_Post Object

Custom Wrapper Classes for CPTs | 149

www.it-ebooks.info

http://www.it-ebooks.info/

1. But seriously, the core team is really smart and makes a good point.

 (
 [ID] => 1
 [post_author] => 1
 [post_date] => 2013-03-28 14:53:56
 [post_date_gmt] => 2013-03-28 14:53:56
 [post_content] => This is the assignment...
 [post_title] => Assignment #1
 [post_excerpt] =>
 [post_status] => publish
 [comment_status] => open
 [ping_status] => open
 [post_password] =>
 [post_name] => assignment-1
 [to_ping] =>
 [pinged] =>
 [post_modified] => 2013-03-28 14:53:56
 [post_modified_gmt] => 2013-03-28 14:53:56
 [post_content_filtered] =>
 [post_parent] => 0
 [guid] => http://schoolpress.me/?p=1
 [menu_order] => 0
 [post_type] => homework
 [post_mime_type] =>
 [comment_count] => 3
 [filter] => raw
 [format_content] =>
)

 [id] => 1
 [post_id] => 1
 [title] => Assignment 1
 [teacher_id] => 1
 [content] => This is the assignment...
 [required] => 1
 [due_date] => 2013-11-05
)
*/

Extending WP_Post Versus Wrapping It
Another option here would be to extend the WP_Post class, but this is not possible right
now since the WP_Post class is defined as final, meaning it is a class that can’t be ex‐
tended. The core team has said they are doing this to keep people from building plugins
that rely on extending the WP_Post object since WP_Post is due for an overhaul in
future versions of WordPress. We think they’re being big fuddy duddies.1

In Chapter 6, we’ll extend the WP_User class (which isn’t defined as final). But the best
we can do with WP_Post is to create a wrapper class for it.

150 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

Why Use Wrapper Classes?
Building a wrapper class for your CPT is a good idea for a few reasons:

• You can put all of your code to register the CPT in one place.
• You can put all of your code to register related taxonomies in one place.
• You can build all of your CPT-related functionality as methods on the wrapper class.
• Your code will read better.

Keep Your CPTs and Taxonomies Together
Put all of your code to register the CPT and taxonomies in one place. Instead of having
one block of code to register a CPT and define the taxonomies and a separate class
wrapper to handle working with the CPT, you can simply place your CPT and taxonomy
definitions into the class wrapper itself:

/*
 Class Wrapper for Homework CPT with Init Function
 /wp-content/plugins/schoolpress/classes/class.homework.php
*/
class Homework
{
 //constructor can take a $post_id
 function __construct($post_id = NULL)
 {
 if(!empty($post_id))
 $this->getPost($post_id);
 }

 //get the associated post and prepopulate some properties
 function getPost($post_id)
 {
 /* snipped */
 }

 //register CPT and Taxonomies on init
 function init()
 {
 //homework CPT
 register_post_type(
 'homework',
 array(
 'labels' => array(
 'name' => __('Homework'),
 'singular_name' => __('Homework')
),
 'public' => true,
 'has_archive' => true,

Custom Wrapper Classes for CPTs | 151

www.it-ebooks.info

http://www.it-ebooks.info/

2. The full version can be found on the BWAwWP site.

)
);

 //subject taxonomy
 register_taxonomy(
 'subject',
 'homework',
 array(
 'label' => __('Subjects'),
 'rewrite' => array('slug' => 'subject'),
 'hierarchical' => true
)
);
 }
}

//run the Homework init on init
add_action('init', array('Homework', 'init'));

The code is snipped2 but shows how you would add an init() method to your class
that is hooked into the init action. The init() method then runs all the code required
to define the CPT. You could also define other hooks and filters here, with the callbacks
linked to other methods in the Homework class.

There are other ways to organize things, but we find that having all of your CPT-related
code in one place helps a lot.

Keep It in the Wrapper Class
Build all of your CPT-related functionality as methods on the wrapper class. When we
registered our “Homework” CPT, a page was added to the dashboard allowing us to
“Edit Homework.” Teachers can create homework like any other post, with a title and
body content. Teachers can publish the homework when it’s ready to be pushed out to
students. All of this post-related functionality is available for free when you create a
CPT.

On the other hand, there is a lot of functionality around many CPTs, including our
Homework CPT, that needs to be coded up. With a wrapper class in place, this func‐
tionality can be added as methods of our Homework class.

For example, one thing we want to do with our homework posts is gather up all the
submissions for a particular assignment. Once we have submissions gathered, we can
render them in a list or process them in some way. Example 5-6 shows a couple of
methods we can add to our Homework class to gather related submissions and to cal‐
culate a flat scale grading curve.

152 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-6. Adding methods to the Homework class
<?php
class Homework
{
 /* Snipped constructor and other methods from earlier examples */

 /*
 Get related submissions.
 Set $force to true to force the method to get children again.
 */
 function getSubmissions($force = false)
 {
 //need a post ID to do this
 if(empty($this->id))
 return array();

 //did we get them already?
 if(!empty($this->submissions) && !$force)
 return $this->submissions;

 //okay get submissions
 $this->submissions = get_children(array(
 'post_parent' => $this->id,
 'post_type' => 'submissions',
 'post_status' => 'published'
));

 //make sure submissions is an array at least
 if(empty($this->submissions))
 $this->submissions = array();

 return $this->submissions;
 }

 /*
 Calculate a grade curve
 */
 function doFlatCurve($maxscore = 100)
 {
 $this->getSubmissions();

 //figure out the highest score
 $highscore = 0;
 foreach($this->submissions as $submission)
 {
 $highscore = max($submission->score, $highscore);
 }

 //figure out the curve
 $curve = $maxscore - $highscore;

 //fix lower scores

Custom Wrapper Classes for CPTs | 153

www.it-ebooks.info

http://www.it-ebooks.info/

 foreach($this->submissions as $submission)
 {
 update_post_meta(
 $submission->ID,
 "score",
 min($maxscore, $submission->score + $curve)
);
 }
 }
}
?>

Wrapper Classes Read Better
In addition to organizing your code to make things easier to find, working with wrapper
classes also makes your code easier to read and understand. With fully wrapped Home‐
work and Submission CPTs and special user classes (covered in Chapter 6), code like
the following is possible:

<?php
//static function of Student class to check if the current user is a student
if (Student::is_student()) {
 //student defaults to current user
 $student = new Student();

 //let's figure out when their next assignment is due
 $assignment = $student->getNextAssignment();

 //display info and links
 if (!empty($assignment)) {
 ?>
 <p>Your next assignment
 <a href="<?php echo get_permalink($assignment->id);?>">
 <?php echo $assignment->title;?>
 for the
 <a href="<?php echo get_permalink($assignment->class_id);?>">
 <?php echo $assignment->class->title;?>
 class is due on <?php echo $assignment->getDueDate();?>.</p>
 <?php
 }
}
?>

The code would be much more complicated if all of the get_post() calls and loops
through arrays of child posts were out in the open. Using an object-oriented approach
makes this code more approachable to other developers working with your code.

154 | Chapter 5: Custom Post Types, Post Metadata, and Taxonomies

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Users, Roles, and Capabilities

Back in Chapter 1, we established logins as a crucial component of any web app. One
of the great things about using WordPress for your apps is that you get fully featured
user management out of the box.

The base WordPress app includes:

• Secure logins with passwords that are salted and hashed
• User records with an email address, username, display name, avatar, and bio
• Admin views to browse, search, add, edit, and delete users
• User roles to separate administrators from editors, authors, contributors, and sub‐

scribers
• Pages for users to login, register, and reset passwords

By using various WordPress functions and APIs, we can:

• Add and manage user meta or profile fields for each user.
• Define custom roles and capabilities for finer control over which users have access

to what.

Managing users in WordPress is a fairly straightforward affair. The User tab in the
dashboard makes it easy to browse, search, add, edit, and delete users. It’s easy to manage
users via code as well.

This chapter will cover:

• How to access user data in your code
• How to add custom fields to users
• How to customize the user profiles and reports in the dashboard

155

www.it-ebooks.info

http://www.it-ebooks.info/

• How to add, update, and delete users
• How to define custom roles and capabilities
• How to extend the WordPress User class to create your own user-focused classes

Getting User Data
In this section, we’ll go over how to instantiate a WordPress user object in code and how
to get basic user information, like login and email address, and user metadata out of
that object.

The workhorse for managing WordPress users in code is the WP_User class. Just like
anything else in WordPress and PHP, there are a few different ways to get a WP_User
object to work with. Here are some of the most popular methods:

// get the WP_User object WordPress creates for the currently logged-in user
global $current_user;

// get the currently logged-in user with the wp_get_current_user() function
$user = wp_get_current_user();

// set some variables
$user_id = 1;
$username = 'jason';
$email = 'jason@strangerstudios.com';

// get a user by ID
$user = wp_getuserdata($user_id);

// get a user by another field
$user1 = wp_get_user_by('login', $username);
$user2 = wp_get_user_by('email', $email);

// use the WP_User constructor directly
$user = new WP_User($user_id);

//use the WP_User constructor with a username
$user = new WP_User($username);

Once you have a WP_User object, you can get any piece of user data you want:

// get the currently logged-in user
$user = wp_get_current_user();

// echo the user's display_name
echo $user->display_name;

// use user's email address to send an email
wp_mail($user->user_email, 'Email Subject', 'Email Body');

156 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

1. Any class method starting with two underscores is considered a magic method in PHP because they are
magically kicked off during certain events.

2. For clarity, we took out parts of the method that were for reverse compatibility and filtering in certain cir‐
cumstances. The preceding code contains the spirit of the method.

// get any user meta value
echo 'Department: ' . $user->department;

Data stored in the wp_users table (user_login, user_nicename, user_email, user_url,
user_registered, user_status, and display_name) can be accessed using the arrow
operator, for example, $user->display_name.

Any value in the wp_usermeta table can also be accessed by using the arrow operator,
for example, $user->meta_key, or by using the get_user_meta() function. These two
lines of code produce the same result:

<?php
$full_name = trim($user->first_name . ' ' . $user->last_name);
$full_name = trim(get_user_meta($user->ID, 'first_name') .
 ' ' . get_user_meta($user->ID, 'last_name'));
?>

It’s useful to understand the trick WordPress is using to allow you to access user meta
on demand as if each meta field was a property of the WP_User class. The WP_User
class is using overloaded properties or the __get() “magic method.”1

With magic methods, any property of the WP_User object that you try to get that isn’t
an actual property of the object will be passed to the _get() method of the class. Here
is a simplified2 version of the _get() method used in the WP_User class:

function __get($key) {
if (isset($this->data->$key)) {
 $value = $this->data->$key;
 } else {
 $value = get_user_meta($this->ID, $key, true);
 }

 return $value;
}

Let’s analyze this. The method first checks if a value exists in the $data property of the
WP_User object. If so, that value is used. If not, the method uses the get_user_meta()
function to see if any meta value exists using the key passed in.

Because we’re loading meta values on demand this way, there is less memory overhead
when instantiating a new WP_User object. On the other hand, because meta values
aren’t available until you specifically ask for them, you can’t dump all metadata on a user
using code like print_r($user) or print_r($user->data).

Getting User Data | 157

www.it-ebooks.info

http://www.it-ebooks.info/

3. This is how the Paid Memberships Pro plugin registers users from the checkout page.

To loop through all the metadata for a user, use the get_user_meta() function with no
$key parameter passed in:

// dump all metadata for a user
$user_meta = get_user_meta($user_id);
foreach($user_meta as $key => $value)
 echo $key . ': ' . $value . '
';

Knowing how WordPress uses the __get() function is interesting, but also important
so you avoid a couple of the limitations of the __get() magic method.

The __get() and __set() methods are not called when assignments are chained to‐
gether. For example, the code $year = $user->graduation_year = '2012' would
produce inconsistent results.

Similarly __get() is not called when coded within an empty() or isset() function call.
So if(empty($user->graduation_year)) will also be false, even if there exists some
user meta with the key graduation_year.

The solution to these two issues is to get a little more verbose with your code:

// Split assignments into multiple lines when using magic methods.
$user->graduation_year = '2012';
$year = '2012';

//To test if a meta value is empty, set a local variable first.
$year = $user->graduation_year;
if (empty($year))
 $year = '2012';

Add, Update, and Delete Users
We touched on some basic functions for adding, updating, and deleting users in Chap‐
ter 2, but since working with user data is such an important part of any web application,
we will do a brief overview with some additional examples and different use case sce‐
narios here.

Occasionally, you will need to add users through code instead of using the WordPress
dashboard. In our SchoolPress app, we might want to allow teachers to enter a list of
email addresses and generate a user for each email entered.

Or maybe you want to customize the registration process. The built-in WordPress reg‐
istration form is difficult to customize. It’s often easier to build your own form and use
WordPress functions to add the user yourself on the backend.3

158 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

As you should already know, the function for adding a user to WordPress is wp_in
sert_user(), which takes an array of user data and inserts it into the wp_users and
wp_usermeta tables:

// insert user from values we've gathered
$user_id = wp_insert_user(array(
 'user_login' => $username,
 'user_pass' => $password,
 'user_email' => $email,
 'first_name' => $firstname,
 'last_name' => $lastname
)
);

// check if username or email has already been used
if (is_wp_error($user_id)){
 echo $return->get_error_message();
} else {
 // continue on with whatever you want to do with the new $user_id
}

The following code will automatically log someone in after adding that person’s user.
The wp_signon() function authenticates the user and sets up the secure cookies to log
the user in:

// okay, log them in to WP
$creds = array();
$creds['user_login'] = $username;
$creds['user_password'] = $password;
$creds['remember'] = true;
$user = wp_signon($creds, false);

Updating users is as easy as adding them with the wp_update_user() function. You pass
in an array of user data and metadata. As long as there is an ID key in the array with a
valid user ID as the value, WordPress will set any specified user values:

// this will update a user's email and leave other values alone
$userdata = array('ID' => 1, 'user_email' => 'jason@strangerstudios.com');
wp_update_user($userdata);

// this function is also perfect for updating multiple user meta fields at once
wp_update_user(array(
 'ID' => 1,
 'company' => 'Stranger Studios',
 'title' => 'CEO',
 'personality' => 'crescent fresh'
));

Add, Update, and Delete Users | 159

www.it-ebooks.info

http://www.it-ebooks.info/

A user’s user_login cannot be updated through wp_update_user.
Also, if a user’s user_pass is updated, the user will be logged out. You
can use the preceding auto-login code above to log the user back in
using the new password.

You can also update one user meta value at a time using the up

date_user_meta($user_id, $meta_key, $meta_value, $prev_value) function.

The following code segments illustrate some more features:

// arrays will get serialized
$children = array('Isaac', 'Marin');
update_user_meta($user_id, 'children', $children);

// you can also store array by storing multiple values with the same key
update_user_meta($user_id, 'children', 'Isaac');
update_user_meta($user_id, 'children', 'Marin');

// when storing multiple values, specify the $prev_value parameter
// to select which one changes
update_user_meta($user_id, 'children', 'Isaac Ford', 'Isaac');
update_user_meta($user_id, 'children', 'Marin Josephine', 'Marin');

//delete all user meta by key
delete_user_meta($user_id, 'children');

//delete just one row when there are multiple values for one key
delete_user_meta($user_id, 'children', 'Isaac Ford');

Note that in the code, I show two different ways to store arrays in user meta. This is
similar to storing options via update_option() or post meta via up

date_post_meta(). The first method (one serialized value per key) keeps row count
down on the wp_usermeta table, which can make queries by meta_key faster. The second
method (multiple values per key) allows you to query by meta_value. For example,
storing child names as separate user meta entries lets you do queries like this:

<?php
// get the IDs of all users with children named Isaac
$parents_of_isaac = $wpdb->get_col("SELECT user_id
 FROM $wpdb->usermeta
 WHERE meta_key = 'children'
 AND meta_value = 'Isaac'");
?>

While it’s possible to query the wp_usermeta and wp_postmeta tables by meta_value,
be careful about query times. The meta_value column is not indexed, and so queries
against large datasets may be slow. Many-to-one relationships like this can also be stored
in custom taxonomies, which can show better performance.

160 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting a user, while dangerous, is incredibly easy to do in code:

//this file contains wp_delete_user and is not always loaded, so let's make sure
require_once(ABSPATH . '/wp-admin/includes/user.php');

//delete the user
wp_delete_user($user_id);

//or delete a user and reassign their posts to user with ID #1
wp_delete_user($user_id, 1);

For network site setups, you will need to use the wpmu_delete_user() function to delete
the user from the entire network. Otherwise wp_delete_user() just deletes the user
from the current blog. You can use the is_multisite() function to detect which func‐
tion should be used:

// I want to make sure we really delete the user.
if (is_multisite())
 wp_delete_user($user_id);
else
 wpmu_delete_user($user_id);

Hooks and Filters
Perhaps more common than adding and updating user data yourself are scenarios where
you want to do some other bit code when new users are added or deleted. For example,
you may want to create and link a new CPT post to a user when she registers. Or maybe
you want to clean up connections and data stored in custom tables when a user is deleted.
This can be done through some user-related hooks and filters.

The hook to run code after a user is registered is user_register. The hook passes in
the user ID of the newly created user:

//create a new "course" CPT when a teacher registers
function sp_user_register($user_id){
 // check if the new user is a teacher (see chapter 15 for details)
 if (pmpro_hasMembershipLevel('teacher', $user_id)) {
 // add a new "course" CPT with this user as author
 wp_insert_post(array(
 'post_title' => 'My First Course',
 'post_content' => 'This is a sample course...',
 'post_author' => $user_id,
 'post_status' => 'draft',
 'post_type' => 'course'

));
 }
}
add_action('user_register', 'sp_user_register');

Hooks and Filters | 161

www.it-ebooks.info

http://www.it-ebooks.info/

The hook to run code just before deleting a user is delete_user. A similar hook de
leted_user (note the past tense) runs just after a user has been deleted.

These hooks are mostly interchangeable, but there are a couple things to note:

• If you hook on delete_user early enough, you might be able to abort the user
delete.

• If you hook on deleted_user, some user data and connections may already be gone
and unavailable:

<?php
// send an email when a user is being deleted
function sp_delete_user($user_id){
 $user = get_userdata($user_id);
 wp_mail($user->user_email,
 "You've been deleted.",
 'Your account at SchoolPress has been deleted.'
);
}
// want to be able to get user_email so hook in early
add_action('delete_user', 'sp_delete_user');
?>

What Are Roles and Capabilities?
Roles and capabilities are how WordPress controls what users have access to view and
do on your site. Each user may have one role, and each role will have one or many
capabilities. Each capability will determine if a user can or can’t view a certain type of
content or perform a certain action.

There are five default roles in every WordPress install: Admin, Editor, Author, Con‐
tributor, and Subscriber. If you are running a network site, you’ll have a sixth role, Super
Admin, which has admin access to all sites on the network.

A full list of capabilities and how they map to the default WordPress roles can be found
on the WordPress Codex Roles and Capabilities page.

In a little bit, we’ll go over how to create new roles outside of the WordPress defaults.
However, for most apps it makes sense to stick to the default roles: have your app ad‐
ministrators use the Admin role and have all of your users/customers use the Subscriber
role.

If your app users will be creating content, consider making them Authors (can create
and publish posts) or Contributors (can create, but not publish posts). If your app has
moderators, consider making them Editors.

Using the default roles is a good idea because certain plugins will expect your users to
have one of these roles. If your admins are really users with an office manager role, you

162 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://bit.ly/roles-caps
http://www.it-ebooks.info/

may have a bit of extra work to get a third-party plugin to work with those users. The
opposite is sometimes true as well. You might have to hide functionality made available
to your users based on the roles they have, especially if you are using roles outside of
Admin (access to everything) and Subscribers (can just view stuff).

Checking a User’s Role and Capabilities
Sometimes you’ll need to check if a user is able to do something before you let her do
it. You do this with the current_user_can() function. This function takes one param‐
eter, which is a string value for the $capability to check. The following code illustrates
the usage of this function:

if (current_user_can('manage_options')) {
 // has the manage options capability, typically an admin
}

if (current_user_can('edit_user', $user_id)) {
 // can edit the user with ID = $user_id.
 // typically either the user himself or an admin
}

if (current_user_can('edit_post', $post_id)) {
 // can edit the post with ID = $post_id.
 // typically the author of the post or an admin or editor
}

if (current_user_can('subscriber')) {
 // one way to check if the current user is a subscriber
}

You can also use the function user_can() to check if someone other than the current
user has a capability. Pass in the $user_id of the user you want to check, the capability,
and any other arguments needed:

/*
 Output comments for the current post,
 highlighting anyone who has capabilities to edit it.
*/
global $post; // current post we are looking at

$comments = get_comments('post_id=' . $post->ID);
foreach($comments as $comment){
 // default CSS classes for all comments
 $classes = 'comment';

 // add can-edit CSS class to authors
 if (user_can($comment->user_id, 'edit_post', $post->ID))
 $classes .= ' can-edit';
?>
<div id="comment-<?php echo $comment->comment_ID;?>"

What Are Roles and Capabilities? | 163

www.it-ebooks.info

http://www.it-ebooks.info/

 class="<?php echo $classes;?>">
 Comment by <?php echo $comment->comment_author;?>:
 <?php echo wpautop($comment->comment_content);?>
</div>
<?php
}

While it is possible to check for a user’s role using current_user_can(), it is better
practice to test a user’s capabilities instead of her role. This will allow your code to
continue to work even if users are given different roles or roles are assigned different
capabilities. For example, checking for manage_options will work how you intend
whether the user is an Admin or a custom role with the manage_options capability
added.

Testing a user’s role should be limited to cases where you really need to know her role
instead of her capability. If you find yourself checking for someone’s role before per‐
forming certain actions, you should take it as a hint that you need to add a new capability.

The following is a function to upgrade any Subscriber whose ID is passed in to the
Author role. To be extra sure, we check the roles array of the user object instead of using
the user_can() function. We use the set_role() method of the user class to set the
new role:

function upgradeSubscriberToAuthor($user_id) {
 $user = new WP_User($user_id);
 if (in_array('subscriber', $user->roles))
 $user->set_role('author');
}

Creating Custom Roles and Capabilities
As we said earlier, it’s a good idea to stick with the default WordPress roles if possible.
However, if you have different classes of users and need to restrict what they are doing
in new ways, adding custom roles and capabilities is the way to do it.

In our SchoolPress app, teachers are just Authors and students are just Subscribers.
However, we do need a custom role for office managers who can manage users but
cannot edit content, themes, options, plugins, or the general WordPress settings. We
can setup the Office Manager role like so:

function sp_roles_and_caps() {
 // Office Manager Role
 remove_role('office'); // in case we updated the caps below
 add_role('office', 'Office Manager', array(
 'read' => true,
 'create_users' => true,
 'delete_users' => true,
 'edit_users' => true,
 'list_users' => true,
 'promote_users' => true,

164 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

 'remove_users' => true,
 'office_report' => true // new cap for our custom report
));
}
// run this function on plugin activation
register_activation_hook(__FILE__, 'sp_roles_and_caps');

When the add_role() function is run, it updates the wp_user_roles option in the
wp_options table, where WordPress looks to get information on roles and capabili‐
ties. So you only want to run this function once upon activation instead of every time
at runtime. That’s why we register this function using register_activation_hook().

We also run remove_role('office') at the start there, which is useful if you want to
delete a role completely, but is also useful to clear out the “office” role before adding it
again in case you edited the capabilities or other settings for the role. Without the
remove_role() line, the add_role() line will not run since the role already exists.

The add_role() function takes three parameters: a role name, a display name, and an
array of capabilities. Use the reference in the Codex to find the names of the default
capabilities or look them up in the /wp-admin/includes/schema.php file of your Word‐
Press install.

Adding new capabilities is as simple as including a new capability name in the
add_role() call or using the add_cap() method on an existing role. Here is an example
showing how to get an instance of the role class and add a capability to it:

// give admins our office_report cap to let them view that report
$role = get_role('administrator');
$role->add_cap('office_report');

Again, this code only needs to run once, which will save it in the database. Put code like
this inside of a function registered via register_activation_hook() just like the last
example.

You can also use the remove_cap() method of the role class, which is useful if you want
to remove some functionality from the default roles. For example, the following code
will remove the edit_pages capabilities from Editors so they can edit any blog post, but
no pages (post of type “page”):

// don't let editors edit pages
$role = get_role('editor');
$role->remove_cap('edit_pages');

You can do some powerful things by adding and editing roles and capabilities. Defining
what users have access to view and do is an important part of building an app. Different
roles can be built for different membership levels or upgrades associated with your
product. Chapter 15 introduces the Paid Memberships Pro plugin, which adds “mem‐
bership levels” as a separate classification for your users, which can sometimes be used

What Are Roles and Capabilities? | 165

www.it-ebooks.info

http://www.it-ebooks.info/

4. When talking about teachers and students as people, we will leave them lowercase. When talking about our
Teacher and Student user types and objects, we will capitalize them

in place of custom roles, but more often is used in conjunction with them. For more
details on how membership levels and roles can work together, see Chapter 15.

Extending the WP_User Class
Similar to how we wrapped the WP_Post class in Chapter 5 to create a more specific
class for our custom post types, we can extend the WP_User class to create useful classes
that will help us organize our code related to different types of users.

For example, in our SchoolPress app, we have two main user types: Teachers and Stu‐
dents.4 Both Teachers and Students are just WordPress users at their core, but each type
of user will also have functionality unique to them. We can encapsulate that unique
functionality by writing Teacher and Student classes that extend the WP_User class.

Wouldn’t it be great if we could write code like this?

<?php
// Student is a class that extends WP_User
$student = new Student();
foreach($student->getAssignments() as $assignment) {
 // assignment here is an instance of a class that extends WP_Post
 $assignment->print();
}
?>

And here is how that code would look in a less object-oriented way:

$student = wp_get_current_user(); // return WP_User object for current user
foreach(sp_getAssignmentsByUser($student->ID) as $assignment) {
 sp_printAssignment($assignment->ID);
}

Both blocks of code are functionally equivalent, but the first example is easier to read
and work with. Perhaps more importantly, having all of your student-related functions
coded as methods on the Student class will help keep things organized.

Here are the initialization and getAssignments() method for the Student class:

<?php
class Student extends WP_User {
 // no constructor so WP_User's constructor is used

 // method to get assignments for this Student
 function getAssignments() {
 // get assignments via get_posts if we haven't yet
 if (! isset($this->data->assignments))
 $this->data->assignments = get_posts(array(

166 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

 'post_type' => 'assignment',// assignments
 'numberposts' => -1, // all posts
 'author' => $this->ID // user ID for this Student
));

 return $this->data->assignments;
 }

 // magic method to detect $student->assignments
 function __get($key) {
 if ($key == 'assignments')
 {
 return $this->getAssignments();
 }
 else
 {
 // fallback to default WP_User magic method
 return parent::__get($key);
 }
 }
}
?>

Above we define the Student class to extend the WP_User class by just adding extends
WP_User to the class definition.

We don’t write our own constructor function because we want to use the same one as
the WP_User class. Namely, we want to be able to write $student = new Stu
dent($user_ID); to get a Student/User by ID.

The getAssignments() method uses the get_posts() function to get all posts of type
“assignment” that are authored by the user associated with this Student. We store the
array of assignment posts in the $data property, which is defined in the WP_User class
and stores all of the base user data and metadata. This allows us to use code like
$student->assignments to get the assignments later.

Normally if $student->assignments is a defined property of $student, the value of that
property will be returned. But if there is no “assignments” property, PHP will send
“assignments” as the $key parameter to your __get method. Here we check that $key
== "assignments" and then return the value of the getAssignments() method defined
later. If $key is something other than "assignments” we pass it to the __get() method
of the parent WP_User class, which checks for the value in the $data property of the
class instance or failing that sends the key to the get_user_meta() function.

At first blush, all this does is allow you to type $student->assignments instead of
$student->getAssignments(), which I suppose is true. However, coding things this
way allows us to cache the assignments in the $data property of the object so we don’t
have to query for it again if it’s accessed more than once. It will also make your code

Extending the WP_User Class | 167

www.it-ebooks.info

http://www.it-ebooks.info/

5. PMPro Register Helper was built to work with Paid Memberships Pro, but it will work without it as well.

more consistent with other WordPress code: If you want the student’s email, it’s
$student->user_email; if you want student’s first_name, it’s $student->first_name;
if you want the student’s assignments, it’s $student->assignments. The person using
the code doesn’t have to know that one of them is stored in the wp_users table, one is
stored in wp_usermeta, and one is the result of a post query.

Adding Registration and Profile Fields
It’s very common to need to add additional profile fields for users in your app. In the
previous section, we discussed how to use the wp_update_user() and up

date_user_meta() functions to manage those values. In this section, we’ll go over how
to add editable fields for our user meta to the registration and profile pages.

In our SchoolPress app, we need to capture some data about our users. For students, we
want to capture their graduation year, major, minor, and advisor’s name. For teachers,
we want to capture their department and office location. For both types of users, we
want to capture their gender, age, and phone number.

There are a few different plugins out there that will help you do this more quickly. For
example, if you install the PMPro Register Helper plugin,5 you can use the the code in
Example 6-1 to add these fields to the registration and profile pages.

Example 6-1. Registering additional fields for users
<?php
function ps_registration_fields(){
 // store fields in an array
 $fields = array();

 // fields for all users
 $fields[] = new PMProRH_Field(
 'gender',
 'select',
 array(
 'options' => array(
 '' => 'Choose One',
 'male' => 'Male',
 'female' => 'Female'
),
 'profile' => true,
 'required' => true
)
);
 $fields[] = new PMProRH_Field(
 'age',
 'text',

168 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://bit.ly/pmp-reg
http://www.it-ebooks.info/

 array(
 'size' => 10,
 'profile' => true,
 'required' => true
)
);
 $fields[] = new PMProRH_Field(
 'phone',
 'text',
 array(
 'size' => 20,
 'label' => 'Phone Number',
 'profile' => true,
 'required' => true
)
);

 // fields for teachers
 $fields[] = new PMProRH_Field(
 'department',
 'text',
 array(
 'size' => 40,
 'profile' => true,
 'required' => true
)
);
 $fields[] = new PMProRH_Field(
 'office',
 'text',
 array(
 'size' => 40,
 'profile' => true,
 'required' => true
)
);

 // fields for students
 $fields[] = new PMProRH_Field(
 'graduation_year',
 'text',
 array(
 'label' => 'Expected Graduation year',
 'size' => 10,
 'profile' => true,
 'required' => true
)
);
 $fields[] = new PMProRH_Field(
 'major',
 'text',
 array('size' => 40, 'profile' => true, 'required' => true)

Adding Registration and Profile Fields | 169

www.it-ebooks.info

http://www.it-ebooks.info/

);
 $fields[] = new PMProRH_Field(
 'minor',
 'text',
 array('size' => 40, 'profile' => true)
);

 // add fields to the registration page
 foreach($fields as $field)
 pmprorh_add_registration_field('after_password', $field);
}
add_action('init', 'ps_registration_fields');
?>

Full instructions on how to use PMPro Register Helper and the syntax for defining fields
can be found in the plugin’s readme file. Instead of covering that here, let’s go through
adding one field to the register and profile pages by hand using the same hooks and
filters PMPro Register Helper uses.

1. Add our field to the registration page:
<?php
function sp_register_form(){
 // get the age value passed into the form
 if (! empty($_REQUEST['age']))
 $age = intval($_REQUEST['age']);
 else
 $age = '';

 // show input
 $age = esc_attr($age);?>
 <p>
 <label for="age">Age

 <input type="text" name="age" id="age" class="input"
 value="<?php echo $age ?>" />
 </label>
 </p>
 <?php
}
add_action('register_form', 'sp_register_form');
?>

We check if (! empty($_REQUEST['age'])) to avoid a
PHP warning when users first visit the registration page and
there isn’t any form data in $_REQUEST yet.

2. Update our user’s age after registering:

170 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

function sp_register_user($user_id){
 // get the age value passed into the form
 $age = intval($_REQUEST['age']);

 // update user meta
 update_user_meta($user_id, 'age', $age);
}
add_action('register_user', 'sp_register_user');

3. Add the age field to the user profile page. We need to hook into both show_user_pro
file and edit_user_profile to show our custom field both when users are viewing
their own profile and when admins are editing other users’ profiles:

<?php
function sp_user_profile($user){
 // show input
 $age = esc_attr($user->age);?>
 <table class="form-table">
 <tbody>
 <tr>
 <th><label for="age">Age</label></th>
 <td>
 <input type="text" name="age" id="age" class="input"
 value="<?php echo $age; ?>"/>
 </td>
 </tr>
 </tbody>
 </table>
 <?php
}
//user's own profile
add_action('show_user_profile', 'sp_user_profile');
//admins editing user profiles
add_action('edit_user_profile', 'sp_user_profile');
?>

Note how the default WordPress registration page HTML uses <p> tags to separate
fields, while the default profile HTML in the dashboard uses table rows.

4. Update our field when updating a profile:
<?php
function sp_profile_update($user_id){
 //make sure the current user can edit this user
 if (! current_user_can('edit_user', $user_id))
 return false;

 // check if value has been posted
 if (isset($_POST['age'])){
 // update user meta
 update_user_meta($user_id, 'age', intval($_POST['age']));
 }
}

Adding Registration and Profile Fields | 171

www.it-ebooks.info

http://www.it-ebooks.info/

// user's own profile
add_action('personal_options_update', 'sp_profile_update');
// admins editing
add_action('edit_user_profile_update', 'sp_profile_update');
?>

Again, we’re hooking into two separate hooks. One for when users are viewing their
own profile, and one for when admins are editing other users’ profiles.

So that’s how you add a field to the registration and profile pages. Just iterate through
that for each field you want to add (or piggyback on plugins like PMPro Register Helper
to do it for you), and you’re good to go.

Customizing the Users Table in the Dashboard
With all of this extra metadata for our users, it is sometimes necessary to extend the
basic users list table in the WordPress dashboard.

You can create your own admin page, with custom queries, and a report that mimics
the style of the dashboard list tables (that’s what we did for the “Members List” in Paid
Memberships Pro). Or you can use hooks and filters provided by WordPress to add
columns and filters to the standard user list, which is what we will cover here.

To do this, we use the manage_users_columns and manage_users_custom_column fil‐
ters. Let’s add our age field to the user’s list:

// add our column to the table
function sp_manage_users_columns($columns){
 $columns['age'] = 'Age';
 return $columns;
}
add_filter('manage_users_columns', 'sp_manage_users_columns');

// tell WordPress how to populate the column
function sp_manage_users_custom_column($value, $column_name, $user_id){
 $user = get_userdata($user_id);
 if ($column_name == 'age')
 $value = $user->age;

 return $value;
}
add_filter('manage_users_custom_column',
 'sp_manage_users_custom_column', 10, 3);

The manage_users_columns filter passes in an array containing all of the default Word‐
Press columns (and any added by other plugins). You can add columns, remove them
(using unset($columns['column_name'])), and reorder them. The keys in the $col
umns array are unique strings to identify them. The values in the $columns array are the
headings for each column.

172 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

The manage_users_custom_column filter is applied to each column in the man
age_users_columns array that isn’t a default WordPress column (i.e., any custom col‐
umn you add). In the sp_manage_users_custom_column() callback, you can do any
calculations needed to get the values for each custom column. Typically the function
contains a large if/then/else block or a switch statement checking the value of $col
umn_name and returning the correct value for each column.

If you use the preceding code, you will get an Age column added to your users page, but
by default you won’t be able to click on it to sort the users list by age like you can with
some of the default users list columns. Here’s the code for that:

<?php
// make the column sortable
function sp_manage_users_sortable_columns($columns){
 $columns['age'] = 'Age';
 return $columns;
}
add_filter('manage_users_sortable_columns',
 'sp_manage_users_sortable_columns');

// update user_query if sorting by Age
function sp_pre_user_query($user_query){
 global $wpdb, $current_screen;

 // make sure we are viewing the users list in the dashboard
 if ($current_screen->id != 'users')
 return;

 // order by age
 if ($user_query->query_vars['orderby'] == 'Age'){
 $user_search->query_from .= " INNER JOIN $wpdb->usermeta m1
 ON $wpdb->users u1
 AND (u1.ID = m1.user_id)
 AND (m1.meta_key = 'age')";
 $user_search->query_orderby = " ORDER BY m1.meta_value
 " . $user_query->query_vars['order'];
 }
}
add_action('pre_user_query', 'sp_pre_user_query');
?>

Above we define Age as a sortable column with the manage_users_sortable_columns
filter. We use the pre_user_query filter to detect the &sortby=Age parameter on the
users list page and update the $user_query object to join on the wp_usermeta table and
order by age. Notice how we use the $current_screen global, which is set in the admin,
to make sure we are on the users list page before editing the query.

Customizing the Users Table in the Dashboard | 173

www.it-ebooks.info

http://www.it-ebooks.info/

Plugins
Now that you’ve seen how to customize various aspects of the WordPress user man‐
agement system, let’s go over a few user-related plugins that will make your life building
web apps a little easier.

Theme My Login
Your members don’t have to know that your site is built on WordPress. Part of that is
using a login form that is integrated seamlessly with your site design rather than the
default WordPress login. The Theme My Login plugin does this perfectly. Traffic to wp-
login.php is redirected to a login page that looks like the rest of your site instead of the
WordPress backend.

Theme My Login also has useful modules for theming user profiles, hiding the dash‐
board from non-admins, and controlling where users are redirected on login and logout.

Hide Admin Bar from Non-Admins
This plugin does exactly what the title states. Only administrators will see the WordPress
admin bar when browsing the frontend of your site. The plugin is just a few lines of
code and can be edited to your needs, for example, to let editors and authors view the
admin bar.

Paid Memberships Pro
Paid Memberships Pro is brought to you by Stanger Studios and allows you to monetize
the content on your site by creating a membership community. This is ideal for any
business or blogger looking to lock down some or all of the content or collect fees for
services provided. This plugin easily integrates with payment gateways such as Stripe,
Paypal, and Authorize.net. Settings for recurring or one-time payments are included.
Paid Memberships Pro allows for the creation of different membership levels within
your site.

PMPro Register Helper
The Register Helper plugin was initially programmed to work with Paid Memberships
Pro, but can be used without it as well. This plugin simplifies the process of adding extra
fields to the registration and profile fields. Instead of a set of three hooks and functions
for each field, fields can be added in a couple lines of code like:

<?php
$text = new PMProRH_Field(
 'company',
 'text',
 array(

174 | Chapter 6: Users, Roles, and Capabilities

www.it-ebooks.info

http://bit.ly/theme-login
http://bit.ly/hide-bar
http://bit.ly/paid-pro
http://bit.ly/pmp-reg-help
http://www.it-ebooks.info/

 'size' => 40,
 'class' => 'company',
 'profile' => true,
 'required' => true
)
);
pmprorh_add_registration_field('after_billing_fields', $text);
?>

The Register Helper plugin also has shortcodes to insert signup forms into your pages
and sidebars and modules to act as starting points for your own registration, profile,
and members directory pages.

Members
The Members plugin extends the control that you have over user roles and capabilities
in your site. It enables you to edit as well as create and delete user roles and capabilities.
This plugin also allows you to set permissions for different user roles to determine which
roles have the ability to add, edit, and/or delete various pieces of content.

You could always write your own code to add roles and capabilities, but Members adds
a nice GUI on top of that functionality that is often useful.

Plugins | 175

www.it-ebooks.info

http://bit.ly/members-wp
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Other WordPress APIs, Objects,
and Helper Functions

In this chapter, we cover several WordPress APIs, objects, and helper functions that
aren’t otherwise covered in the rest of the book but are still important pieces of a Word‐
Press developer’s arsenal.

Shortcode API
Shortcodes are specially formatted pieces of text that can be used to insert dynamic
output into your posts, pages, widgets, and other static content areas.

Shortcodes come in three main flavors.

1. A single shortcode like [myshortcode].
2. Shortcodes with attributes like [myshortcode id="1" type="text"].
3. Enclosing shortcodes like [myshortcode id="1"] ... some content here ...

[/myshortcode].

In Chapter 3, we shared an example of how to use shortcodes to add arbitrary content
into a WordPress post or page. In that example, like flavor number one, we simply
swapped out the shortcode for our content. You can also add attributes to the shortcode
to affect the callback function processing it or wrap some content in an opening and
closing shortcode pair to filter some particular content.

The basics of creating shortcodes is to define the callback function for your shortcode
using the add_shortcode() function. Any attributes are added to an array that is passed
to the callback as the first $atts parameter. Any enclosed content is passed to the call‐
back as the second $content parameter.

177

www.it-ebooks.info

http://www.it-ebooks.info/

The following code creates a shortcode called msg and makes use of attributes and en‐
closed content:

<?php
/*
 shortcode callback for [msg] shortcode
 Example: [msg type="error"]This is an error message.[/msg]
 Output:
 <div class="message message-error">
 <p>This is an error message.</p>
 </div>
*/
function sp_msg_shortcode($atts, $content)
{
 //default attributes
 extract(shortcode_atts(array(
 'type' => 'information',
), $atts));
 $content = do_shortcode($content); //allow nested shortcodes
 $r = '<div class="message message-' .
 $type . '"><p>' . $content . '</p></div>';
 return $r;
}
add_shortcode('msg', 'sp_msg_shortcode');
?>

Notice that the content you want displayed is returned from the callback function rather
than echoed to the output buffer. This is because the shortcode filter is typically run
before any content has been pushed to the screen. If there were any echo calls inside
this function, the output would show up at the top of the page instead of inline where
you want it.

Shortcode Attributes
The other important piece demonstrated in the preceding code is how the default at‐
tributes are set. The shortcode_atts() function takes three parameters: $pairs,
$atts, and $shortcode.

$pairs is an array of default attributes, where each key is the attribute name and each
value is the attribute value.

$atts is a similar array of attributes, usually passed in straight from the $atts parameter
passed to the shortcode callback function. The shortcode_atts() function merges the
default and passed attributes into one array.

The $shortcode parameter is optional. If set to match the shortcode name, it will trigger
a filter shortcode_atts_{shortcode} that can be used by other plugins/etc. to override
the default attributes.

178 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

The results of shortcode_atts() are then passed to the PHP function extract(), which
creates a variable in the local scope for every key in the attributes array.

In this way, the variable $type in our example is available to the rest of the function and
either contains the default value of message or whatever value was set in the shortcode
itself.

Nested Shortcodes
Finally, we pass the inner $content through the do_shortcode() function to enable
nested shortcodes. If you had a [help_link] shortcode that generated a link to your
documentation depending on what section of a site you were on or the type of user
logged in, you might might want to use that shortcode within the [msg] shortcode:

[msg type="error"]
 An error has occured. Use the following link for help: [help_link].
[/msg]

As long as the callback function for the [msg] shortcode passes its results through
do_shortcode(), the inner [help_link] shortcode will be filtered as intended.

While nested shortcodes of different types will work, nesting the
same shortcode within itself will break. The regex parser that pulls
the shortcodes out of content is engineered for speed. The parser
only needs to scan through the content once. Handling nested
shortcodes of the same type would require multiple passes through
the content, which would slow the algorithm down. The solution to
this is to either (1) avoid nesting the same shortcode within itself,
(2) use differently named shortcodes that link to the same callback
function, or (3) write a custom regex parser for your shortcode and
parse the shortcodes out yourself.

The do_shortcode() function can also be used to apply shortcodes to custom fields,
content pulled from custom tables, or other content that is not already being run through
the the_content filter. In most cases outside of shortcode callback functions themselves,
it will be more appropriate to use apply_filters(‘the_content’, $content), which
will apply all filters on the the_content hook including the shortcode filter:

<?php
global $post;
$sidebar_content = $post->sidebar_content;
?>
<div class="post">
 <?php the_content(); ?>
</div>
<div class="sidebar">
 <?php

Shortcode API | 179

www.it-ebooks.info

http://www.it-ebooks.info/

 //echo do_shortcode($sidebar_content);
 echo apply_filters('the_content', $sidebar_content);
 ?>
</div>

Removing Shortcodes
Like actions and filters, you can remove registered shortcodes to keep them from being
applied to a certain post or on content you are passing directly to do_shortcode() or
through the the_content filter. The remove_shortcode() function takes the shortcode
name as its only parameter and will unregister the specified shortcode. re
move_all_shortcodes() will unregister all shortcodes.

When calling remove_shortcode(), make sure that the calls comes
late enough in the execution of WordPress for the shortcode you want
removed to have already been added. For example, if a plugin adds
the shortcode during the init action on priority 10, you will want to
put your call to remove_shortcode() during the init action on pri‐
ority 11 or higher or through another hook that fires after init.

The array of registered shortcodes is stored in a global variable $shortcode_tags. It can
be useful to make copies of this variable or edit it directly. For example, if you want to
exclude certain shortcodes from a specific piece of content, you can make a backup copy
of all shortcodes, remove the offending shortcodes, apply shortcodes, then restore the
original list of shortcodes:

//make a copy of the original shortcodes
global $shortcode_tags;
$original_shortcode_tags = $shortcode_tags;

//remove the [msg] shortcode
unset($shortcode_tags['msg']);

//do shortcodes and echo
$content = do_shortcode($content);
echo $content;

//restore the original shortcodes
$shortcode_tags = $original_shortcode_tags;

Other Useful Shortcode-Related Functions
shortcode_exists($tag)

Checks if the shortcode $tag has been registered.

has_shortcode($content, $tag)

Checks if the shortcode $tag appears within the $content variable.

180 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

shortcode_parse_atts($text)

Pulls attributes out of a shortcode. This is done for you when parsing a shortcode,
but can be called directly if you want to pull attributes out of other text like HTML
tags or other templates.

strip_shortcodes($text)

Strips all shortcodes out of the $text variable and replace them with empty text
instead of calling the callback function.

Other details about the Shortcode API can be found in the WordPress Codex.

Widgets API
Widgets allow you to place contained pieces of code and content in various widget areas
throughout your WordPress site. The most typical use cases are to add widgets to a
sidebar or footer area. You could always hardcode these sections on a website, but using
widgets allows your nondevelopers to drag and drop widgets from one area to another
or to tweak their settings through the widgets page in the admin dashboard. WordPress
comes with many built-in widgets, including the basic text widget shown in Figure 7-1.

Figure 7-1. Text widget settings

Widgets API | 181

www.it-ebooks.info

http://bit.ly/shortc-api
http://www.it-ebooks.info/

Plenty of plugins also include widgets for showing various content. We won’t go into
the use and styling of widgets here, since their use is covered well in the WordPress
Codex page on widgets, but we will cover how to add widgets and widget areas to your
plugins and themes.

The UI of the widgets page in the admin dashboard is going through
an overhaul for WordPress version 3.8; however the functions and
API calls to add new widgets through code should not be affected
much, if at all.

Before You Add Your Own Widget
Before you go about developing a new widget, it’s worth spending some time to see if
an existing widget will work for you. If you get creative, you can sometimes avoid
building a new widget.

Search the repository for plugins that may already have the widget you need. If so,
double-check the code there and see if it will work.

Text widgets can be used to add arbitrary text into a widget space. You can also embed
JavaScript code this way or add a shortcode to the text area and use a shortcode to output
the functionality you want (you may have created the shortcode already for other use)
instead of creating a new widget.

If your widget is displaying a list of links, it might make sense to build a menu of those
links and use the Custom Menu widget that is built into WordPress. Other widgets that
display recent posts from a category will often work with CPTs and custom taxonomies
either out of the box or with a little bit of effort.

If you do need to add a brand-new widget, the following section will cover the steps
required.

Adding Widgets
To add a new widget to WordPress, you must create a new PHP class for the widget that
extends the WP_Widget class of WordPress. The WP_Widget class can be found in wp-
includes/widgets.php and is a good read. The comments in the code explain how the
class works and which methods you must override to build your own widget class. There
are four main methods that you must override, shown clearly in the following code by
the sample widget class from the WordPress Codex page for the Widgets API:

/*
 Taken from the Widgets API Codex Page at:
 http://codex.wordpress.org/Widgets_API
*/
class My_Widget extends WP_Widget {

182 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/widgets-codex
http://bit.ly/widgets-codex
http://codex.wordpress.org/Widgets_API
http://www.it-ebooks.info/

 public function __construct() {
 // widget actual processes
 }

 public function widget($args, $instance) {
 // outputs the content of the widget
 }

 public function form($instance) {
 // outputs the options form on admin
 }

 public function update($new_instance, $old_instance) {
 // processes widget options to be saved
 }
}
add_action('widgets_init', function(){
 register_widget('My_Widget');
});

The add_action() call passes an anonymous function as the second parameter, which
is only supported in PHP versions 5.3 and higher. Technically, WordPress only requires
PHP version 5.2.4 or higher. The alternative is to use the create_function() function
of PHP, which is slower and potentially less secure than using an anonymous func‐
tion. However, if you plan to release your code to a wide audience, you might want to
use the alternative method shown in the following code:

/*
 Taken from the Widgets API Codex Page at:
 http://codex.wordpress.org/Widgets_API
*/
add_action('widgets_init',
 create_function('', 'return register_widget("My_Widget");')
);

Pulling this all together, Example 7-1 presents a new widget for the SchoolPress site.
This widget will show either a globally defined note set in the widget settings or a note
specific to the current BuddyPress group set by the group admins.

Example 7-1. SchoolPress note widget
<?php
/*
 Widget to show the current class note.
 Teachers (Group Admins) can change note for each group.
 Shows the global note set in the widget settings if non-empty.
*/
class SchoolPress_Note_Widget extends WP_Widget
{
 public function __construct() {
 parent::__construct(

Widgets API | 183

www.it-ebooks.info

http://www.it-ebooks.info/

 'schoolpress_note',
 'SchoolPress Note',
 array('description' => 'Note to Show on Group Pages');
 }

 public function widget($args, $instance) {
 global $current_user;

 //saving a note edit?
 if (!empty($_POST['schoolpress_note_text'])
 && !empty($_POST['class_id'])) {
 //make sure this is an admin
 if(groups_is_user_admin($current_user->ID,intval($_POST['class_id']))){
 //should escape the text and possibly use a nonce
 update_option(
 'schoolpress_note_' . intval($_POST['class_id']),
 $_POST['schoolpress_note_text']
);
 }
 }

 //look for a global note
 $note = $instance['note'];

 //get class id for this group
 $class_id = bp_get_current_group_id();

 //look for a class note
 if (empty($note) && !empty($class_id)) {
 $note = get_option("schoolpress_note_" . $class_id);
 }

 //display note
 if (!empty($note)) {
 ?>
 <div id="schoolpress_note">
 <?php echo wpautop($note);?>
 </div>
 <?php

 //show edit for group admins
 if (groups_is_user_admin($current_user->ID, $class_id)) {
 ?>
 Edit
 <div id="schoolpress_note_edit" style="display: none;">
 <form action="" method="post">
 <input type="hidden"
 name="class_id"
 value="<?php echo intval($class_id);?>" />
 <textarea name="schoolpress_note_text" cols="30" rows="5">
 <?php echo esc_textarea(get_option('schoolpress_note_'.$class_id))
 ;?>

184 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

 </textarea>
 <input type="submit" value="Save" />

 Cancel

 </form>
 </div>
 <script>
 jQuery(document).ready(function() {
 jQuery('#schoolpress_note_edit_trigger').click(function(){
 jQuery('#schoolpress_note').hide();
 jQuery('#schoolpress_note_edit').show();
 });
 jQuery('#schoolpress_note_edit_cancel').click(function(){
 jQuery('#schoolpress_note').show();
 jQuery('#schoolpress_note_edit').hide();
 });
 });
 </script>
 <?php
 }
 }
 }

 public function form($instance) {
 if (isset($instance['note']))
 $note = $instance['note'];
 else
 $note = "";
 ?>
 <p>
 <label for="<?php echo $this->get_field_id('note'); ?>">
 <?php _e('Note:'); ?>
 </label>
 <textarea id="<?php echo $this->get_field_id('note'); ?>"
 name="<?php echo $this->get_field_name('note'); ?>">
 <?php echo esc_textarea($note);?>
 </textarea>
 </p>
 <?php
 }

 public function update($new_instance, $old_instance) {
 $instance = array();
 $instance['note'] = $new_instance['note'];

 return $instance;
 }
}
add_action('widgets_init', function() {
 register_widget('SchoolPress_Note_Widget');

Widgets API | 185

www.it-ebooks.info

http://www.it-ebooks.info/

 });
?>

Defining a Widget Area
In order to add widget areas or sidebar to your theme, you need to do two things. First,
you need to register the widget area with WordPress. Then you need to add code to your
theme at the point where you want your widget area to appear.

Registering a widget area is fairly straightforward using the register_sidebar() func‐
tion, which takes an array of arguments as its only parameter. The available arguments
are as follows, taken from the WordPress Codex page on the register_sidebar()
function:
name

Sidebar name (defaults to \Sidebar#, where # is the ID of the sidebar)

id
Sidebar ID—must be all in lowercase, with no spaces (default is a numeric auto-
incremented ID)

description
Text description of what/where the sidebar is. Shown on widget management screen
since 2.9 (default: empty)

class
CSS class name to assign to the widget HTML (default: empty)

before_widget
HTML to place before every widget (default: <li id="%1$s" class="widget
%2$s">); uses sprintf for variable substitution

after_widget
HTML to place after every widget (default: \n)

before_title
HTML to place before every title (default: <h2 class="widgettitle">)

after_title
HTML to place after every title (default: </h2>\n)

To register a bare-bones sidebar for the assignment pages of our SchoolPress theme, we
would add the following code to our theme’s functions.php or includes/sidebars.php file:

register_sidebar(array(
 'name' => 'Assignment Pages Sidebar',
 'id' => 'schoolpress_assignment_pages',
 'description' => 'Sidebar used on assignment pages.',
 'before_widget' => '',

186 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/reg-sidebar
http://bit.ly/reg-sidebar
http://www.it-ebooks.info/

 'after_widget' => '',
 'before_title' => '',
 'after_title' => ''
));

The values for before/after_widget and before/after_title would be set based on
how our theme styles widgets and titles. Some expect elements; others use <div>
elements. But if all of the styling is handled by our widget’s code, we can just set every‐
thing to empty strings. Next we need to actually embed the widget area into our
theme. This is done using the dynamic_sidebar() function, which takes the ID of a
registered sidebar as its only parameter:

if(!dynamic_sidebar('schoolpress_student_status'))
{
 //fallback code in case my_widget_area sidebar was not found
}

The code will load the schoolpress_student_status sidebar if found. If it is not found,
dynamic_sidebar() will return false and the code inside of the curly braces there will
be executed instead. This can be used to show default content in a sidebar area if the
sidebar area doesn’t have any widgets inside of it or doesn’t exist at all.

Historically, WordPress themes were developed with a sidebar area, and themes would
hardcode certain features into them. Widgets were first introduced primarily to replace
these static sidebars with dynamic sidebars that could be controlled through the Widgets
page of the dashboard. This is why the term sidebar is used to define widget areas, even
though widgets are used in places other than just sidebars.

If you need to know whether a sidebar is registered and in use (has widgets) without
actually embedding the widgets, you can use the is_active_sidebar() function. Just
pass in the ID of the sidebar, and the function will return true if the sidebar is registered
or false if it is not. The Twenty Thirteen theme uses this function to check that a sidebar
has widgets before rendering the wrapping HTML for the sidebar:

<?php
//from twenty-thirteen/sidebar.php
if (is_active_sidebar('sidebar-2')) : ?>
 <div id="tertiary" class="sidebar-container" role="complementary">
 <div class="sidebar-inner">
 <div class="widget-area">
 <?php dynamic_sidebar('sidebar-2'); ?>
 </div><!-- .widget-area -->
 </div><!-- .sidebar-inner -->
 </div><!-- #tertiary -->
<?php endif; ?>

Widgets API | 187

www.it-ebooks.info

http://www.it-ebooks.info/

Embedding a Widget Outside of a Dynamic Sidebar
The normal process to add widgets to your pages is described in the previous section,
where you define a dynamic sidebar and then add your widget to the sidebar through
the Widgets page in the admin dashboard.

Alternatively, if you know exactly which widget you want to include somewhere and
don’t want the placement of the widget left up to the admins controlling the Widgets
settings in the dashboard, you can embed a widget using the the_widget($widget,
$instance, $args) function:

• $widget—The PHP class name for your widget
• $instance—An array containing the settings for your widget
• $args—An array containing the arguments normally passed to register_side
bar()

Besides hardcoding the placement of the widget, using the the_widget() function also
allows you to set the settings of the widget programmatically. In the following code, we
embed the StudentPress Note widget directly into a theme page. We set the instance
array to include an empty string for the $note value, ensuring that the group note is
shown if available:

//show note widget, overriding global note
the_widget('SchoolPress_Note_Widget', //classname
 array('note'=>''), //instance vars
 array(//widget vars
 'before_widget' => '',
 'after_widget' => '',
 'before_title' => '',
 'after_title' => ''
)
);

Dashboard Widgets API
Dashboard widgets are the boxes that show up on the homepage of your WordPress
admin dashboard (see Figure 7-2).

By default, WordPress includes a few different dashboard widgets. By adding and re‐
moving widgets from the dashboard using the Dashboard Widgets API, you can make
your WordPress app more useful by placing the information and tools most required
by your app right there on the dashboard homepage. It’s a nice touch that should be
done by all WordPress apps with users who will be accessing the WordPress admin.

188 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-2. Dashboard widgets

Removing Dashboard Widgets
The dashboard widgets are really just meta boxes assigned to the dashboard page of the
admin. The WordPress Codex page on the Dashboard Widgets API has a list of the
default widgets shown on the WordPress dashboard:

// From the Dashboard Widgets API Codex Page
// Main column:
$wp_meta_boxes['dashboard']['normal']['high']['dashboard_browser_nag']
$wp_meta_boxes['dashboard']['normal']['core']['dashboard_right_now']
$wp_meta_boxes['dashboard']['normal']['core']['dashboard_recent_comments']
$wp_meta_boxes['dashboard']['normal']['core']['dashboard_incoming_links']
$wp_meta_boxes['dashboard']['normal']['core']['dashboard_plugins']

// Side Column:
$wp_meta_boxes['dashboard']['side']['core']['dashboard_quick_press']
$wp_meta_boxes['dashboard']['side']['core']['dashboard_recent_drafts']
$wp_meta_boxes['dashboard']['side']['core']['dashboard_primary']
$wp_meta_boxes['dashboard']['side']['core']['dashboard_secondary']

To remove widgets from the dashboard, you can use the remove_meta_box($id,
$page, $context) function:

Dashboard Widgets API | 189

www.it-ebooks.info

http://www.it-ebooks.info/

• $id—The ID defined when the meta box was added. This is set as the id attribute
of the <div> element created for the meta box.

• $page—The name of the admin page the meta box was added to. Use dashboard to
remove dashboard meta boxes.

• $context—Either normal, advanced, or side, depending on where the meta box
was added.

To remove all of the default widgets, you can hook into wp_dashboard_setup and make
a call to remove_meta_box() for each widget you’d like to remove:

// Remove all default WordPress dashboard widgets
function sp_remove_dashboard_widgets()
{
 remove_meta_box('dashboard_browser_nag', 'dashboard', 'normal');
 remove_meta_box('dashboard_right_now', 'dashboard', 'normal');
 remove_meta_box('dashboard_recent_comments', 'dashboard', 'normal');
 remove_meta_box('dashboard_incoming_links', 'dashboard', 'normal');
 remove_meta_box('dashboard_plugins', 'dashboard', 'normal');

 remove_meta_box('dashboard_quick_press', 'dashboard', 'side');
 remove_meta_box('dashboard_recent_drafts', 'dashboard', 'side');
 remove_meta_box('dashboard_primary', 'dashboard', 'side');
 remove_meta_box('dashboard_secondary', 'dashboard', 'side');
}
add_action('wp_dashboard_setup', 'sp_remove_dashboard_widgets');

There are a different set of widgets added to the multisite network dashboard, and a
different hook must be used to remove the network dashboard widgets. The following
code hooks on wp_network_dashboard_setup and removes the meta boxes added to
the “dashboard-network” $page:

//Remove network dashboard widgets
function sp_remove_network_dashboard_widgets()
{
 remove_meta_box('network_dashboard_right_now', 'dashboard-network', 'normal');
 remove_meta_box('dashboard_plugins', 'dashboard-network', 'normal');
 remove_meta_box('dashboard_primary', 'dashboard-network', 'side');
 remove_meta_box('dashboard_secondary', 'dashboard-network', 'side');
}
add_action('wp_network_dashboard_setup', 'sp_remove_network_dashboard_widgets');

You could use similar code to remove default meta boxes from other dashboard pages,
like the edit page and edit post pages. The $page value to use when removing meta boxes
there are page and post, respectively.

190 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Your Own Dashboard Widget
The wp_add_dashboard_widget() function is a wrapper to add_meta_box() that will
add a widget to your admin dashboard page. The wp_add_dashboard_widget() func‐
tion takes four parameters:

• $widget_id—An ID for your widgets that is added as a CSS class name to the wrap‐
per for the widget and also used as the array key for the dashboard widgets array.

• $widget_name—Name of the widget displayed in the widget heading.
• $callback—Callback function that renders the widget.
• $control_callback—Optional. Defaults to NULL. Callback function to handle the

display and processing of a configuration page for the widget.

Example 7-2 adds a dashboard widget to show the status of current assignments
(Figure 7-3). The code includes the call to wp_add_dashboard_widget() to register the
dashboard widget and also includes the callback function to display that actual widget
and another callback function to handle the configuration view (Figure 7-4) of that
widget.

Example 7-2. Assignments dashboard widget
<?php
/*
 Add dashboard widgets
*/
function sp_add_dashboard_widgets() {
 wp_add_dashboard_widget(
 'schoolpress_assignments',
 'Assignments',
 'sp_assignments_dashboard_widget',
 'sp_assignments_dashboard_widget_configuration'
);
}
add_action('wp_dashboard_setup', 'sp_add_dashboard_widgets');

/*
 Assignments dashboard widget
*/
//widget
function sp_assignments_dashboard_widget() {
 $options = get_option("assignments_dashboard_widget_options", array());

 if (!empty($options['course_id'])) {
 $group = groups_get_group(array(
 'group_id'=>$options['course_id']
));
 }

Dashboard Widgets API | 191

www.it-ebooks.info

http://www.it-ebooks.info/

 if (!empty($group)) {
 echo "Showing assignments for class " .
 $group->name . ".
...";
 /*
 get assignments for this group and list their status
 */
 }
 else {
 echo "Showing all assignments.
...";
 /*
 get all assignments and list their status
 */
 }
}
//configuration
function sp_assignments_dashboard_widget_configuration() {
 //get old settings or default to empty array
 $options = get_option("assignments_dashboard_widget_options", array());

 //saving options?
 if (isset($_POST['assignments_dashboard_options_save'])) {
 //get course_id
 $options['course_id'] = intval(
 $_POST['assignments_dashboard_course_id']
);

 //save it
 update_option("assignments_dashboard_widget_options", $options);
 }

 //show options form
 $groups = groups_get_groups(array('orderby'=>'name', 'order'=>'ASC'));
 ?>
 <p>Choose a class/group to show assignments from.</p>
 <div class="feature_post_class_wrap">
 <label>Class</label>
 <select name="assignments_dashboard_course_id">
 <option value="" <?php selected($options['course_id'], "");?>>
 All Classes
 </option>
 <?php
 $groups = groups_get_groups(array('orderby'=>'name',
 'order'=>'ASC'));

 if (!empty($groups) && !empty($groups['groups'])) {
 foreach ($groups['groups'] as $group) {
 ?>
 <option value="<?php echo intval($group->id);?>"
 <?php selected($options['course_id'], $group->id);?>>
 <?php echo $group->name;?>
 </option>
 <?php

192 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 ?>
 </select>
 </div>
 <input type="hidden" name="assignments_dashboard_options_save" value="1" />
 <?php
}
?>

Figure 7-3. Our assignments widget

Figure 7-4. The configuration view of our assignments widget

Note that we hook into wp_dashboard_setup for the function that adds our widget. If
we wanted our widget to show up on the network dashboard, we would need to use the
wp_network_dashboard_setup hook.

The sp_assignments_dashboard_widget() function draws the actual widget shown
on the dashboard page. This is where we would add our code to loop through assign‐
ments and show stats on what percentage of assignments have been turned in.

The sp_assignments_dashboard_widget_configuration() function draws the con‐
figuration form and also includes code to process the form submission and update the
option we use to store the configuration.

Settings API
WordPress offers an API that can be used to generate options and settings forms for
your plugins in the admin dashboard.

Settings API | 193

www.it-ebooks.info

http://www.it-ebooks.info/

The Settings API is very thoroughly documented in the WordPress Codex. There is also
a great tutorial by Tom Mcfarlin at Tutsplus called The Complete Guide to the Word‐
Press Settings API. These resources cover the details of adding menu pages and settings
within them for use in your plugins and themes. Below are some tips specific to app
developers.

Do You Really Need a Settings Page?
Before spending the time to create a settings page and adding to the technical debt of
your app, consider using a global variable to store an array of the options used by your
plugin or app:

global $schoolpress_settings;
$schoolpress_settings = array(
 'info_email' => 'info@schoolpress.me',
 'info_email_name' => 'SchoolPress'
);

For apps that won’t be managed by nondevelopers and/or won’t be distributed, using a
global of settings may be enough. Just store a global variable like the one in the preceding
code at the top of your plugin file or inside of a includes/settings.php file. Why build the
UI if you aren’t going to use it?

Even if your plugin or theme will eventually be distributed, we like to start with a global
variable like this anyway. The settings that you think you need in the beginning may
not be the ones you need at the end of your project. Settings may be added or removed
throughout development. Settings you think need a dropdown may need a free text field
instead. The Settings API makes it easy to add settings and update them later, but it is
still much easier to change one element in a global array than it is to add or modify a
handful of function calls and definitions.

If most of the statements below apply to you, consider using a global variable for your
settings instead of building a settings UI:

• This plugin is not going to be distributed outside my team.
• The only people changing these settings are developers.
• These settings do not need to be different across our different environments.
• These settings are likely to change before release.

Could You Use a Hook or Filter Instead?
Another alternative to adding a setting to your plugin through the Settings API is to use
a hook or filter instead. If a setting you are imagining would only be used by a minority
of your users, consider adding a hook or filter to facilitate the setting.

194 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/settings-api
http://bit.ly/guide-wp
http://bit.ly/guide-wp
http://www.it-ebooks.info/

For example, someone using our WP-Doc plugin may request the ability to re‐
strict .doc generation to admins only or a specific subset of WordPress roles. We could
add a settings page with a list of roles with checkboxes to enable or disable .doc down‐
loads for that role. Maybe it should just be one checkbox to enable downloads for all
roles or just admins. Maybe it should be a free text field to enter a capability name to
check for before allowing the download.

A filter might be a better way to do this. We can add a capability check before the .doc
is served and use a filter to let developers override the default array of capabilities
checked. This code should be added to the wpdoc_template_redirect() function of
the WP-Doc plugin, before the .doc page is rendered:

//don't require any caps by default, but allow developers to add checks
$caps = apply_filters('wpdoc_caps', array());

if(!empty($caps))
{
 //guilty until proven innocent
 $hascap = false;

 //must be logged in to have any caps at all
 if(is_user_logged_in())
 {
 //make sure the current user has one of the caps
 foreach($caps as $cap)
 {
 if(current_user_can($cap))
 {
 $hascap = true;
 break; //stop checking
 }
 }
 }

 if(!$hascap)
 {
 //don't show them the file
 header('HTTP/1.1 503 Service Unavailable', true, 503);
 echo "HTTP/1.1 503 Service Unavailable";
 exit;
 }
}

You could then override the wpdoc_caps array by adding actions like these:

//require any user account
add_filter('wpdoc_caps', function($caps) { return array('read'); });

//require admin account
add_filter('wpdoc_caps', function($caps) { return array('manage_options'); });

Settings API | 195

www.it-ebooks.info

http://www.it-ebooks.info/

//authors only or users with a custom capability (doc)
add_filter('wpdoc_caps', function($caps) { return array('edit_post', 'doc'); });

The preceding example uses anonymous functions, also known as
closures, so the add_filter() call can be written on one line without
using a separate callback function. This syntax requires PHP ver‐
sion 5.3 or higher.

To recap, the more the following statements are true, the more it makes sense to use a
hook or filter instead of a settings UI:

• Only a small number of people will want to change this setting.
• The people changing this setting are likely to be developers.
• The people changing this setting are likely to have custom needs.
• This setting would require a large number of individual settings or more compli‐

cated UI.

Use Standards When Adding Settings
If and when you do need to add settings to your plugin or theme, be sure to use the
tutorials listed earlier in this chapter to make sure you are using the Settings API cor‐
rectly to add your settings.

Using the Settings API takes a little bit of up-front work, but does let you add and edit
settings more easily later on. Also, since you are doing things the WordPress way, other
developers will understand how your code works and will be able to hook into it. If a
developer wants to make an add-on for your plugin, she will be able to hook into your
existing menus and settings sections to add additional settings for her plugins.

Using the Settings API will also ensure that your settings look similar to the other settings
through a user’s WordPress dashboard. You don’t want developers to have to learn a
new UI just to use your plugin.

Ignore Standards When Adding Settings
While you typically want to use the Settings API and the WordPress standards when
adding settings for your plugin, sometimes it make sense to ignore those standards.

The main case here is if you have a large number of settings that deserve a very custom
UI. If you only have one or two settings, users won’t be spending a lot of time inside the
settings screens. They will just want to change those two settings as fast as possible.

196 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

However, if your plugin requires dozens of settings, possibly across multiple tabs or
screens, possibly related to one another, it makes sense to treat the settings for your app
as an app itself. You should devote some attention to make sure that the UI and UX for
your settings screen is as optimized as possible.

The WordPress Settings API is pretty flexible in terms of how things are displayed. You
can control how each section is rendered and how each individual setting field is ren‐
dered. But in the end, it really is focused on one or more tabs with sections with fields
on them. For applications with a large number of settings that interact with one another,
you may want to use a different organization for your settings.

Don’t be scared to ignore the standards here. Add a menu to the dashboard, have the
callback function for it include a set of organized .php files to generate the settings form
and process it, and follow these tips if possible:

• Add your menu sections and items per the standards, even if your settings pages
themselves use a custom layout.

• Remember to sanitize your inputs and use nonces when appropriate.
• Use hooks and filters to whenever possible, if you’d like to allow others to extend

your settings.
• Use the same HTML elements and CSS classes whenever possible so the general

style stays consistent with the rest of WordPress now and through future updates.

Due to the complexity of ecommerce software, it makes sense that ecommerce plugins
often have complicated settings screens. Here are two examples of plugins doing custom
settings pages well:

• Paid Memberships Pro (whose code is posted on GitHub)
• WooCommerce (whose code is posted on GitHub)

Rewrite API
Apache comes with a handy module called mod_rewrite that allows you to route in‐
coming URLs to different URLs or file locations using rules that are typically added to
an .htaccess file in your site root folder. Other Web servers have similar URL rewriting
systems; here are the standard rules for WordPress:

BEGIN WordPress
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteRule ^index\.php$ - [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

Rewrite API | 197

www.it-ebooks.info

http://bit.ly/paid-pro
http://bit.ly/pmp-github
http://bit.ly/wcomm-plugin
http://bit.ly/wc-github
http://www.it-ebooks.info/

RewriteRule . /index.php [L]
</IfModule>
END WordPress

David Walsh does an excellent line-by-line explanation of the WordPress .htaccess file
on his blog if you’d like to understand more about Apache’s mod_rewrite module and
how the WordPress rules work. Generally, these rules reroute all incoming traffic to any
nondirectory or nonfile URL to the index.php file of your WordPress install.

WordPress then parses the actual URL to figure out which post, page, or other content
to show. For example, under most permalink settings, the URL /about/ will route to the
page or post with the slug “about.”

For the most part, you can let WordPress do its thing and handle permalink redirects
on its own. However, if you need to add your own rules to handle certain URLs in
particular ways, that can be done through the Rewrite API.

Adding Rewrite Rules
The basic function to add a rewrite rule is add_rewrite_rule($rule, $rewrite, $po
sition):

• $rule—A regular expression to match against the URL, just like you would use in
an Apache rewrite rule.

• $rewrite—The URL to rewrite to if the rule is matched. Matched groups from the
rule regular expressions are contained in an array called $matches.

• $position—Specifies whether to place the rules above the default WordPress rules
(top) or below them (bottom).

Say we want to pass a subject line to our contact form through the URL. We could have
URLs like /contact/special-offer/, which would load the contact page and prepopulate
the subject to “special-offer.” We could add a rewrite rule like this:

add_rewrite_rule(
 '/contact/([^/]+)/?',
 'index.php?name=contact&subject=' . $matches[1],
 'top'
);
add_rewrite_rule(
flush_rewrite_rules();

With this rule added to the rewrite rules, a visit to /contact/special-offer/ would redirect
to the /contact/ page and populate the global $wp_query->query_vars[‘subject’]
with the value “special-offer,” or whatever text was added after /contact/. Your contact
form could use this value to prepopulate the subject value of the email sent.

198 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/dw-htaccess
http://bit.ly/dw-htaccess
http://www.it-ebooks.info/

Flushing Rewrite Rules
WordPress caches the rewrite rules. So when you add a rule like this, you need to flush
the rewrite rules so they take effect. Flushing the rewrite rules can take some time, so
it’s important that you don’t do it on every page load. To keep the rewrite rules in order,
every plugin that affects the rewrite rules should do these three things:

1. Add the rule during plugin activation and immediately flush the rewrite rules using
the flush_rewrite_rules() function.

2. Add the rule during the init hook in case the rules are flushed manually through
the Permalinks Settings page of the dashboard or by another plugin.

3. Add a call to flush_rewrite_rules() during deactivation so the rule is removed
on deactivation.

The following code shows how our contact subject rule should be added according to
the three previous steps:

//Add rule and flush on activation.
function sp_activation()
{
 add_rewrite_rule(
 '/contact/([^/]+)/?',
 'index.php?name=contact&subject=' . $matches[1],
 'top'
);
 flush_rewrite_rules();
}
register_activation_hook(__FILE__, 'sp_activation');

/*
 Add rule on init in case another plugin flushes,
 but don't flush cause it's expensive
*/
function sp_init()
{
 add_rewrite_rule(
 '/contact/([^/]+)/?',
 'index.php?name=contact&subject=' . $matches[1],
 'top'
);
}
add_action('init', 'sp_init');

//Flush rewrite rules on deactivation to remove our rule.
function sp_deactivation()
{
 flush_rewrite_rules();
}
register_deactivation_hook(__FILE__, 'sp_deactivation');

Rewrite API | 199

www.it-ebooks.info

http://www.it-ebooks.info/

Other Rewrite Functions
WordPress offers some other functions to insert special kinds of rewrite rules. These
include:
add_rewrite_tag()

Another way to add custom querystring variables.

add_feed()

Add a new kind of feed to function like the RSS and ATOM feeds.

add_rewrite_endpoint

Add querystring variables to the end of a URL.

The Codex pages for each function explains things well. Some functions will make more
sense for certain uses versus others. Example 7-3 shows how to use the add_re
write_endpoint() function to detect when /doc/ is added to the end of a URL and to
force the download of a .doc file. This code makes use of the fact that any HTML docu‐
ment with a .doc extension will be read by Microsoft Word as a .doc file.

The add_rewrite_endpoint() function takes two parameters:

• $name*—Name of the endpoint, for example, 'doc'.
• $places*—Specifies which pages to add the endpoint rule to. Uses the EP_* constants

defined in wp-includes/rewrite.php.

Example 7-3. The WP DOC plugin
<?php
/*
Plugin Name: WP DOC
Plugin URI: http://bwawwp.com/wp-docx/
Description: Add /doc/ to the end of a page or post to download a .docx version.
Version: .1
Author: Stranger Studios
*/

/*
 Register Rewrite Endpoint
*/
//Add /doc/ endpoint on activation.
function wpdoc_activation()
{
 add_rewrite_endpoint('doc', EP_PERMALINK | EP_PAGES);
 flush_rewrite_rules();
}
register_activation_hook(__FILE__, 'wpdoc_activation');

//and init in case another plugin flushes, but don't flush cause it's expensive
function wpdoc_init()

200 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/rewrite-api
http://bit.ly/rewrite-add
http://bit.ly/rewrite-end
http://www.it-ebooks.info/

{
 add_rewrite_endpoint('doc', EP_PERMALINK | EP_PAGES);
}
add_action('init', 'wpdoc_init');

//flush rewrite rules on deactivation to remove our endpoint
function wpdoc_deactivation()
{
 flush_rewrite_rules();
}
register_deactivation_hook(__FILE__, 'wpdoc_deactivation');

/*
 Detect /doc/ use and return a .doc file.
*/
function wpdoc_template_redirect()
{
 global $wp_query;
 if(isset($wp_query->query_vars['doc']))
 {
 global $post;

 //double check this is a post
 if(empty($post->ID))
 return;

 //headers for MS Word
 header("Content-type: application/vnd.ms-word");
 header('Content-Disposition: attachment;Filename='.
 $post->post_name.'.doc');

 //html
 ?>
 <html>
 <body>
 <h1><?php echo $post->post_title; ?></h1>
 <?php
 echo apply_filters('the_content', $post->post_content);
 ?>
 </body>
 </html>
 <?php

 exit;
 }
}
add_action('template_redirect', 'wpdoc_template_redirect');
?>

Note in the preceding example that we follow the three steps we used in the add_re
write_rule() example to define our rule on activation and init and flush all rules on
activation and deactivation.

Rewrite API | 201

www.it-ebooks.info

http://www.it-ebooks.info/

1. Posts with post_type page.

2. If you move this code into a subdirectory of your plugin, you will need to update the register_activa
tion_hook() and register_deactivation_hook() calls to point to the main plugin file.

We used EP_PERMALINK | EP_PAGES when defining our endpoint, which will add the
endpoint to single post pages and page pages.1 The full list of endpoint mask constants
is shown below:

EP_NONE
EP_PERMALINK
EP_ATTACHMENT
EP_DATE
EP_YEAR
EP_MONTH
EP_DAY
EP_ROOT
EP_COMMENTS
EP_SEARCH
EP_CATEGORIES
EP_TAGS
EP_AUTHORS
EP_PAGES
EP_ALL

For more information on the Rewrite API, both the Codex page on the Rewrite API and
the Codex page on the WP_Rewrite class are good sources of information. There is a
lot more that can be done with the WP_Rewrite class that we didn’t get into here.

WP-Cron
A cron job is a script that is run on a server at set intervals. The WP-Cron functions in
WordPress extend that functionality to your WordPress site. Cron jobs, sometimes
called events, can be set up to run every few minutes, every few hours, every day, or on
specific days of the week or month. Some typical uses of cron jobs include queueing up
digest emails, syncing data with third-party APIs, and preprocessing CPU-intensive
computations used in reports and comparative analysis.

There are three basic parts to adding a cron job to your app:

1. Schedule the cron event. This will fire a specific hook/action at the defined interval.
2. Hook a function to that action.
3. Place the code you actually want to run within the callback function.

This code can be added to a custom plugin file to schedule some cron jobs:2

202 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/rewrite-codex
http://bit.ly/class-ref-wp
http://www.it-ebooks.info/

//schedule crons on plugin activation
function sp_activation()
{
 //do_action('sp_daily_cron'); will fire daily
 wp_schedule_event(time(), 'daily', 'sp_daily_cron');
}
register_activation_hook(__FILE__, 'sp_activation');

//clear our crons on plugin deactivation
function sp_deactivation()
{
 wp_clear_scheduled_hook('sp_daily_cron');
}
register_deactivation_hook(__FILE__, 'sp_deactivation');

//function to run daily
function sp_daily_cron()
{
 //do this daily
}
add_action("sp_daily_cron", "sp_daily_cron");

The function wp_schedule_event($timestamp, $recurrence, $hook, $args) has
the following attributes:

• $timestamp—Timestamp for first time to run the hook. You can typically set it to
time().

• $recurrence—How often the event should run. You can pass hourly, daily, or
twicedaily, or use the cron_schedules hook to add other intervals.

• $hook—The name of the action to fire on each recurrence.
• $args—Any arguments you’d like to pass along to the hook fired can be added to

the end of the wp_schedule_event() call.

We like to give our cron events generic names based on the interval. This way, if we
wanted to run another function daily, we could just add add_action(‘sp_daily_cron’,
‘new_function_name’); to our codebase.

Adding Custom Intervals
By default, the wp_schedule_event() function will only accept intervals of hourly,
daily, or twicedaily. To add other intervals, you need to use the cron_schedules
hook:

//add a monthly interval to use in cron jobs
function sp_cron_schedules($schedules)
{
 $schedules['monthly'] = array(
 'interval' => 60*60*24*30, //really 30 days

WP-Cron | 203

www.it-ebooks.info

http://www.it-ebooks.info/

 'display' => 'Once a Month'
);
}
add_filter('cron_schedules', 'sp_cron_schedules');

Unlike Unix-based cron jobs, WP-Cron doesn’t support intervals based on day of the
week. To do this, you can use a daily cron job and have the function called check the
day of the week:

//run on Mondays
function sp_monday_cron()
{
 //get day of the week, 0-6, starting with Sunday
 $weekday = date("w");

 //is it Monday?
 if($weekday == "1")
 {
 //execute this code on Mondays
 }
}
add_action("sp_daily_cron", "sp_monday_cron");

You could write similar code to check for a specific day of the month (date("j")) or
even specific months (date("m"))

Scheduling Single Events
The preceding examples show how to execute code at some interval. You may also have
times when you want to fire an event once at some point in the future. For example, you
may want to schedule email delivery of new blog posts one hour after they are posted.
This will give authors one hour to fix any issues with the blog posts before it gets pushed
around the world. The wp_schedule_single_event() function can be used in these
cases where we want schedule an event to fire just once.

Kicking Off Cron Jobs from the Server
In all of the previous examples, we assumed that events scheduled with wp_sched
ule_event() would actually run when they are scheduled. That’s almost true.

On Unix systems, the cron service runs every minute (generally) to check if there is a
script to run. In WordPress, that check is done on every page load. So if no one loads
your website in a given day, or only pages from a static cache are loaded, your cron jobs
may not fire off that day. They will fire off with the next page load.

This setup is fine for casual WordPress sites, but our apps need reliability. Luckily, it is
easy to disable the internal cron timer and set one up on your web server to fire when
you need it to.

204 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

To disable the WordPress cron timer, simply add the following to your wp-config.php
file:

define('DISABLE_WP_CRON', true);

This constant just enables or disables the check for events that are ready to fire. You still
add and manage events as we did up above. We just need to manually hit the wp-
cron.php file in our WordPress install often enough to fire our scripts when needed.

If all you have are daily scripts, you can add a cron job like this via the crontab -e
command:

0 0 * * * wget -O - -q -t 1 http://yoursite.com/wp-cron.php?doing_wp_cron=1

Information on how to use cron can be found at its Wikipedia entry. Information on
how to use wget can be found at the wget manual.

The 0 0 * * * part of the preceding entry tells cron to execute this script at 0 minutes
on the 0th hour (midnight) every day of the week.

The wget -O - -q -t 1 http://yoursite.com/wp-cron.php?doing_wp_cron=1 part
uses the wget command to load up the wp-cron.php page in your WordPress install. The
-O - tells wget to send output to devnull, and the -q enables quiet mode. This will keep
cron from adding files to your server or emailing you the outputs of each cron run. The
-t 1 tells cron to try once. This will keep wget from hitting your server multiple times
if the first try fails. If the call to wp-cron.php is failing, the rest of your website is probably
failing too; hopefully you’ve already been notified.

Be sure to change yoursite.com to your actual site URL. And finally, the ?do
ing_wp_cron=1 on the end of the URL is needed since wp-cron.php will check for that
$_GET parameter before running.

Make sure that the URL to wp-cron.php is excluded from any cach‐
ing mechanisms you may have installed on your site.

This one cron job will fire every day, and any daily cron jobs you scheduled inside of
WordPress will fire daily. If you need your crons to run more often, you can change the
cron entry to run every hour or every few minutes. Note that a call to wp-cron.php is
basically a hit to your website. A check every minute is effectively the same as an addi‐
tional 1,440 users hitting your site. So schedule your cron jobs conservatively.

WP-Cron | 205

www.it-ebooks.info

http://bit.ly/cronwiki
http://bit.ly/gnu-manual
http://www.it-ebooks.info/

Using Server Crons Only
If you aren’t distributing your code or don’t mind telling your users that they have to
set up server-side cron jobs, you don’t need to schedule your cron events in WordPress
at all. You can just schedule a server-side cron job that calls a special URL to kick off
your callback function. This is especially useful if you need to have more control over
what times of day your crons run or otherwise just feel more comfortable managing
your cron jobs in Unix instead of WordPress.

The information on scheduling server-side cron jobs in this section
can be used to replace WP-Cron for recurring events. Single events
set using wp_schedule_single_event() will need to be handled us‐
ing WP-Cron still or some other mechanism.

If we were running our Monday cron job from earlier, we would update the code in
WordPress:

//run on Mondays
function sp_monday_cron()
{
 //check that cron param was passed in
 if(empty($_REQUEST['sp_cron_monday']))
 return false;

 //execute this code on Mondays
}
add_action("init", "sp_monday_cron");

And your cron job entry would look like this:

0 0 * * 1 wget -O - -q -t 1 http://yoursite.com/?sp_cron_monday=1

Again, make sure that the URL to ?sp_cron_monday=1 is excluded
from any caching mechanisms you may have installed on your site.

WP Mail
The wp_mail() function is a replacement for PHP’s built-in mail() function. It looks
like this:

wp_mail($to, $subject, $message, $headers, $attachments)

and its attributes are:

206 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

• $to—A single email address, comma-separated list of email addresses, or array of
email addresses the email will be sent to (using the “To:” field).

• $subject—The subject of the email.
• $message—The body of the email. By default, the email is sent as a plain-text mes‐

sage and should not include HTML. However, if you change the content type (see
the following example), you should include HTML in your message.

• $headers—Optional array of mail headers to send with the message. This can be
used to add CCs, BCCs, and other advanced mail headers.

• $attachments—A single filename or array of filenames to be attached to the out‐
going email.

There are two major improvements wp_mail() makes over mail().

1. The wp_mail() function is hookable. The wp_mail filter will pass an array of all of
the parameters passed into the wp_mail() function for you to filter. You can also
filter the sending address using the wp_mail_from and wp_mail_from_name filters.

2. The wp_mail() function can be passed a single filename or array of filenames in
the $attachments parameters, which will be attached to the outgoing email. At‐
taching files to emails is very complicated, but wp_mail() makes it easy by wrapping
around the PHPMailer class, which itself wraps around the default PHP mail()
function.

Sending Nicer Emails with WordPress
By default, emails sent through the wp_mail() function are sent from the admin email
address set on the General Settings page of the admin dashboard, with “WordPress”
used as the name. This is not ideal. You can change these values using the wp_mail_from
and wp_mail_from_name filters.

Also by default, emails are sent using plain text. You can use the wp_mail_con
tent_type filter to send your emails using HTML.

Finally, it is nice to add a styled header and footer to all of your outgoing emails. This
can be done by filtering the email message using the wp_email filter.

The following code combines these techniques to pretty up the emails being sent by
your WordPress app:

//Update from email and name
function sp_wp_mail_from($from_email)
{
 return 'info@schoolpress.me';
}

WP Mail | 207

www.it-ebooks.info

http://www.it-ebooks.info/

function sp_wp_mail_from_name($from_name)
{
 return 'SchoolPress';
}
add_filter('wp_mail_from', 'sp_wp_mail_from');
add_filter('wp_mail_from_name', 'sp_wp_mail_from_name');

//send HTML emails instead of plain text
function sp_wp_mail_content_type($content_type)
{
 if($content_type == 'text/plain')
 {
 $content_type = 'text/html';
 }
 return $content_type;
}
add_filter('wp_mail_content_type', 'sp_wp_mail_content_type');

//add a header and footer from files in the active theme
function sp_wp_mail_header_footer($email)
{
 //get header
 $headerfile = get_stylesheet_directory() . "email_header.html";
 if(file_exists($headerfile))
 $header = file_get_contents($headerfile);
 else
 $header = "";

 //get footer
 $footerfile = get_stylesheet_directory() . "email_footer.html";
 if(file_exists($footerfile))
 $footer = file_get_contents($footerfile);
 else
 $footer = "";

 //update message
 $email['message'] = $header . $email['message'] . $footer;

 return $email;
}
add_filter('wp_mail', 'sp_wp_mail_header_footer');

Sending emails from your server can present interesting network problems. Running a
local SMTP server for sending emails can be time-consuming on top of the work of
running a web server. Deliverability of your emails can be affected by spam filters that
haven’t whitelisted your apps IP range. The Configure SMTP plugin can be used to send
your outgoing email through an external SMTP server like a Google Apps account.
Services like Mandril and Sendgrid, each with their own WordPress plugin, also offer
ways to send email from their trusted servers with additional tracking of open and
bounce rates.

208 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/config-smtp
http://www.it-ebooks.info/

File Header API
The comment block at the top of the main theme and plugin files are often referred to
as headers. The File Header API consists of three functions, get_plugin_data(),
wp_get_theme(), and get_file_data(), which allow you to parse these comment
blocks.

As a reminder, here is what a plugin’s file header may look like:

/*
Plugin Name: Paid Memberships Pro
Plugin URI: http://www.paidmembershipspro.com
Description: Plugin to Handle Memberships
Version: 1.7.3.2
Author: Stranger Studios
Author URI: http://www.strangerstudios.com
*/

You can pull this data into an array by calling the get_plugin_data() function:

get_plugin_data($plugin_file, $markup = true, $translate = true)

Its attributes are:

• $plugin_file—The absolute path to the main plugin file where the header will be
parsed.

• $markup—A flag, which if set to true, will apply HTML markup to some of the
header values. For example, the plugin URI will be turned into a link.

• $translate—A flag, which if set to true, will translate the header values using the
current locale and text domain.

The following code loops through the plugins directory and will show data for most of
the plugins there. It actually takes quite a bit of logic to find all plugins in all formats.
For that you can use the get_plugins() function, which will return an array of all
plugins or take a look at the code for that function found in wp-admin/includes/
plugin.php. More information on get_plugins() can be found in the WordPress Codex:

//must include this file
require_once(ABSPATH . "wp-admin/includes/plugin.php");

//remember current directory
$cwd = getcwd();

//switch to themes directory
$plugins_dir = ABSPATH . "wp-content/plugins";
chdir($plugins_dir);

echo "<pre>";

File Header API | 209

www.it-ebooks.info

http://bit.ly/funct-ref
http://www.it-ebooks.info/

//loop through theme directories and print theme info
foreach(glob("*", GLOB_ONLYDIR) as $dir)
{
 $plugin = get_plugin_data($plugins_dir .
 "/" . $dir . "/" . $dir . ".php", false, false);
 print_r($plugin);
}

echo "</pre>";

//switch back to current directory just in case
chdir($cwd);

Similarly, you can use wp_get_theme() to get information out of a theme’s file header:

wp_get_theme($stylesheet, $theme_root)

Its attributes are:

• $stylesheet—The name of the directory for the theme. If not set, this parameter will
be the current theme’s directory.

• $theme_root—The absolute path to the theme’s root folder. If not set, the value
returned by get_raw_theme_root() is used.

The following code loops through the themes directory and will show data for most of
the themes there. It actually takes quite a bit of logic to find all themes. For that you can
use the wp_get_themes() function, which will return an array of all WP_Theme objects
or take a look at the code for that function found in wp-includes/theme.php. More in‐
formation on wp_get_themes() can be found in the WordPress Codex:

//remember current directory
$cwd = getcwd();

//switch to themes directory
$themes_dir = dirname(get_template_directory());
chdir($themes_dir);

echo "<pre>";

//loop through theme directories and print theme info
foreach(glob("*", GLOB_ONLYDIR) as $dir)
{
 $theme = wp_get_theme($dir);
 print_r($theme);
}

echo "</pre>";

//switch back to current directory just in case
chdir($cwd);

210 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://bit.ly/wp-get-theme
http://www.it-ebooks.info/

Adding File Headers to Your Own Files
Both the get_plugin_info() and wp_get_theme() functions make use of the
get_file_data() function. You can access the get_file_data() function directly to
pull file headers out any file. This can help you to create your own drop-ins or sub-
plugins (often referred to as modules or add-ons) for your plugins.

get_file_data($file, $default_headers, $context = "") has the following at‐
tributes:

• $file—The full path and filename of the file to pull data from.
• $default_headers—An array of the header fields to look for. The keys of the array

should be the header names, and the values of the array should be regex expressions
for parsing the label that comes before the “:” in the comment. You can usually just
enter the header name as the regex as well.

• $context—A label to differentiate between different kinds of headers. This param‐
eter determines which extra_{context}_headers filter is applied to the default
headers passed in:

//set headers for our files
$default_headers = array(
 "Title" => "Title",
 "Slug" => "Slug",
 "Version" => "Version"
);

//remember current directory
$cwd = getcwd();

//change to reports directory
$reports_dir = dirname(__FILE__) . "/reports";
chdir($reports_dir);

echo "<pre>";

//loop through .php files in reports directory
foreach (glob("*.php") as $filename)
{
 $data = get_file_data($filename, $default_headers, "report");
 print_r($data);
}

echo "</pre>";

//change back to the current directory in case someone expects the default
chdir($cwd);

File Header API | 211

www.it-ebooks.info

http://www.it-ebooks.info/

Adding New Headers to Plugins and Themes
Example 7-4 adds an Allow Updates header to plugins. If this header is found and the
value is no or false, then that plugin will not be flagged to update.

Example 7-4. The Stop Plugin Updates plugin
<?php
/*
Plugin Name: Stop Plugin Updates
Plugin URI: http://bwawwp.com/plugins/stop-plugin-updates/
Description: "Allow Updates: No" i a plugin's header keeps it from updating.
Version: .1
Author: Stranger Studios
Author URI: http://www.strangerstudios.com
*/

//add AllowUpdates header to plugin
function spu_extra_plugin_headers($headers) {
 $headers['AllowUpdates'] = "Allow Updates";
 return $headers;
}
add_filter("extra_plugin_headers", "spu_extra_plugin_headers");

/*
 loop through plugins
 check if updates are disallowed and if so remove it from list
*/
function spu_pre_set_site_transient_update_plugins($update_plugins) {
 //see if there are any plugins needing updates
 if (!empty($update_plugins) && !empty($update_plugins->response)) {
 //loop through plugins
 $new_plugins = array();
 foreach ($update_plugins->response as $pluginpath => $plugin) {
 //check if the plugin is allowed or not
 $plugin_data = ABSPATH . '/wp-content/plugins/' . $pluginpath;
 $plugin_data = get_plugin_data($plugin_data);
 if (strtolower($plugin_data['Allow Updates']) == "no" ||
 strtolower($plugin_data['Allow Updates']) == "false") {
 //change checked version and don't add to the new response
 $update_plugins->checked[$pluginpath] = $plugin_data['Version'];
 }
 else {
 //not blocked. add plugin to new response
 $new_plugins[$pluginpath] = $plugin;
 }
 }
 $update_plugins->response = $new_plugins;
 }

return $update_plugins;
}

212 | Chapter 7: Other WordPress APIs, Objects, and Helper Functions

www.it-ebooks.info

http://www.it-ebooks.info/

add_action(
 'pre_set_site_transient_update_plugins',
 'spu_pre_set_site_transient_update_plugins'
);
?>

File Header API | 213

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Secure WordPress

Hackers beware! This chapter is packed full of tips and advice on how to make Word‐
Press sites more secure and hopefully prevent them from falling prey to any malicious
intent.

Why It’s Important
No matter what size website you are running, security is something that you do not want
to overlook. Any size site can fall victim to hackers or malware. Being knowledgeable
and proactive about WordPress security will help you be less vulnerable and hopefully
avoid any attacks.

One of the most popular types of attacks is called a brute-force attack in which a bot or
script of code tries to gain access to your site by guessing the correct username and
password combination. It may not sound that dangerous, but keep in mind that these
bots are huge networks of computers making hundreds or even thousands of guesses
every second! Even if these bots don’t gain access to your WordPress admin, they will
often take your site down anyway through the sheer amount of resources it takes your
server to respond to the malicious requests. This is called a denial of service (or DoS)
attack, and can be caused by a targeted attack or by automated spammers and brute-
force hacks.

A standard WordPress install comes with some built-in security features that we will
discuss in this chapter along with other tips that you can easily follow to make your site
more secure. There are also some plugins we will highlight that can help with other
issues such as spam.

Some very bad things that can happen to you if you decide to not read the rest of this
chapter. Here are some pretty frequent scenarios:

215

www.it-ebooks.info

http://www.it-ebooks.info/

• You pull up your website and notice that it’s not there anymore. Downtime is bad!
Hopefully you have a backup and can restore it quickly.

• You notice that you start showing up in search results for Viagra and other male
enhancement drugs. This can be bad for business if your website is not specifically
selling these drugs.

• Your application is sending out emails to all of your members with links to down‐
load a computer virus. Nobody wants that.

• Your application is hacked and access to personal information of your members is
exposed like their names, addresses, phone numbers, and email addresses.

• Your website is hacked and is used to infect other websites with malware. This is
the quickest way to get blacklisted.

Security Basics
These are the simplest but most important security tips to consider. Pay attention here
because it could save you a lot of time, money, and upset visitors/members.

Update Frequently
The first and most important security tip is to always make sure you upgrade to the
most recent version of WordPress as soon as a new version becomes available and also
always update any plugins/themes that you have installed on your site. Many of the
updates that are pushed out involve security updates; therefore, it is always important
to upgrade your software in order to stay up to date and safe.

Don’t Use the Username “admin”
Another important item to take care of is making sure not to use “admin” as one of your
user accounts. Many bots will automatically try to login to your site with the username
“admin.” Knowing that most people don’t change this account is half the battle; all they
really need to focus on is guessing the password. When installing WordPress, the default
username will be “admin” unless you specifically change it, and you SHOULD specifi‐
cally change it! If you are already using WordPress and are using the username “admin,”
you should create a new user account with an administrator role, login with that new
user, and delete the default admin account. Make sure to change any posts or pages created
by your admin account to this new account.

216 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Use a Strong Password
Choosing a secure password is also very important, especially for your administrator
accounts. Don’t use one word or one name. Jumble your password up and make it not
connected to you personally.

Make sure your password is a combination of upper- and lowercase letters as well as
numbers and special characters. A good password should also be at least 10 characters
long; the more characters you use, the stronger your password will be. If you are having
trouble coming up with one yourself, just mash on your keyboard a bit or use a service
like Random.org. Make sure you memorize it or copy it somewhere and secure it prop‐
erly. WordPress will tell you if you are using a strong password; please take this into
consideration.

Examples of Bad Passwords
• password
• password123
• pa55w0rd
• 123456789
• qwerty
• batman
• mustang
• letmein

Using any variation of password or single words, numbers, or names is a bad idea:

• usmarine (I was in the Marines)
• brianmessenlehner (my first and last name)
• brian&robin91011 (my name, my wife’s name, and our anniversary)
• Dalya-Brian (my daughter’s name and my son’s name)
• ThaiShortiMaxx (my pets)
• IAMAWESOME! (everybody knows this, so it could be easy to guess)

Anybody that knows anything about me and my family could potentially guess pass‐
words like these.

Security Basics | 217

www.it-ebooks.info

http://www.random.org/passwords/
http://www.it-ebooks.info/

Examples of Good Passwords
• U$s(#8H27@!
• !lik32EaTF1$h&CHIp5
• #Uk@nN0tBr3akTh1s$h1t!!!
• [0mG-LoL-R0Fl-T0T3$CraY]!

It can be a pain in the neck and take an extra second or two entering in a good password
but it’s well worth it if it can prevent your website/application from getting hacked.

Hardening Your WordPress Install
Let’s go over a few techniques for making it harder for your application to hacked.

Don’t Allow Admins to Edit Plugins or Themes
By default, WordPress allows administrators to edit the source code of any plugin or
theme directly in the web browser. You should disable this functionality so just in case
a hacker is able to login to one of your admin accounts, he can’t add any malicious code
via the admin user interface for editing code. To disable this functionality, add this code
to your wp-config.php file:

<?php
define('DISALLOW_FILE_EDIT', true);
?>

Change Default Database Tables Prefix
The standard WordPress install uses wp_ as a prefix for all tables in the database. By
simply changing this prefix to something else, you will make your site a lot less vulner‐
able to hackers who attempt SQL injections and assume that you are using the generic
wp_ prefix. On a brand new WordPress install, you will have the option to use any table
prefix you want; you should change the default wp_ prefix to something custom.

If you would like to do this on a WordPress site that is already up and running, you can
follow these steps:

1. Make a database backup just in case you mess this up!
2. Open wp-config.php and change

$table_prefix = 'wp_';

to

218 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

$table_prefix = 'anyprefix_';

3. Update the existing table names in your database to include your new prefix with
the following SQL commands using phpMyAdmin or any SQL client such as
MySQL Workbench:

rename table wp_commentmeta to anyprefix_commentmeta;
rename table wp_comments to anyprefix_comments;
rename table wp_links to anyprefix_links;
rename table wp_options to anyprefix_options;
rename table wp_postmeta to anyprefix_postmeta;
rename table wp_posts to anyprefix_posts;
rename table wp_terms to anyprefix_terms;
rename table wp_term_relationships to anyprefix_term_relationships;
rename table wp_term_taxonomy to anyprefix_term_taxonomy;
rename table wp_usermeta to anyprefix_usermeta;
rename table wp_users to anyprefix_users;

You will have to run a similar rename SQL query for any custom tables
added by your app or plugins you are using.

Using SQL commands or a SQL client update any instance of wp_ in the prefix_op
tions and anyprefix_usermeta tables and change any values like wp_ to prefix_:

update anyprefix_options set option_name = replace(
option_name,'wp_','anyprefix_');
update anyprefix_usermeta set meta_key = replace(
meta_key,'wp_','anyprefix_');

Test out your site and make sure everything is working as it should.

If you don’t feel comfortable manually making these changes, there are some plugins
that can change your table prefix for you:

• Change Table Prefix
• Change DB Prefix

Move wp-config.php
The WordPress wp-config.php file stores valuable information like your database loca‐
tion, username, and password and your WordPress authentication keys. Since these
values are stored in PHP variables and they are not displayed to the browser, it is not
likely that anybody could gain access to this data, but it could happen. You can move
wp-config.php to one level above your WordPress install, which in most cases should be

Hardening Your WordPress Install | 219

www.it-ebooks.info

http://bit.ly/change-tp
http://bit.ly/change-db
http://www.it-ebooks.info/

a nonpublic directory. WordPress will automatically look one level up for wp-
config.php if it doesn’t find it in your root directory. For example, move /username/
public_html/wp-config.php to /username/wp-config.php.

You can also store wp-config.php as any filename in any directory location. To do this,
make a copy of wp-config.php, name the copy whatever you want, and move it to any
directory above your root install of WordPress. In your original wp-config.php file, re‐
move all of the code and add an include to the relative path and filename of the copy
you made. For example, copy /username/public_html/wp-config.php to /username/
someotherfolder/stuff.php. Change the code in wp-config.php to include(‘/username/
someotherfolder/stuff.php’);

Hide Login Error Messages
Normally when trying to login in to your site, WordPress will display a message if you
have put in the wrong username or password. Unfortunately this lets hackers know
exactly what they are doing wrong or right when attempting to access your site.

Luckily there is a simple fix for this, which is to add a line of code into your theme
functions.php file or in a custom plugin which will hide or alter those messages:

<?php
add_filter('login_errors',
create_function(
 '$a', '"Invalid username or
password.";'
));
?>

Hide Your WordPress Version
A lot of bots will scour the Internet in search of WordPress sites to target specifically by
the version of WordPress they are running. They are looking for sites with known vul‐
nerabilities they can exploit. By default, WordPress displays the following code within
the <head></head> of every page:

<meta name="generator" content="WordPress 3.8.1" />

You can easily hide the version of WordPress you are using by implementing the fol‐
lowing code:

<?php
add_filter('the_generator', '__return_null');
?>

220 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Don’t Allow Logins via wp-login.php
Some bots are smarter than others. We just talked about hiding your WordPress version
from some bots, but sometimes just knowing that you are using WordPress is all a bot
may be looking for, and this is pretty easy if it sends a POST request to wp-login.php.
Once a bot realizes wp-login.php exists, it can then begin to try to login to your site.

We like to redirect wp-login.php to the homepage, which prevents bots from specifically
trying to login via wp-login.php. Follow these steps to make an alternative login page
and hide the default wp-login.php login page:

1. Add the following rewrite rule to your .htaccess file:
RewriteRule ^new-login$ wp-login.php

Note that new-login will be the URL you can use to actually log in to wp-admin;
you can change this to whatever you want.

2. In your theme functions.php file or in a custom plugin, add this code:
<?php
function schoolpress_wp_login_filter($url, $path, $orig_scheme) {
 $old = array("/(wp-login\.php)/");
 $new = array("new-login");
 return preg_replace($old, $new, $url, 1);
}
add_filter('site_url', 'schoolpress_wp_login_filter', 10, 3);

function schoolpress_wp_login_redirect() {
 if (strpos($_SERVER["REQUEST_URI"], 'new-login') === false) {
 wp_redirect(site_url());
 exit();
 }
}
add_action('login_init', 'schoolpress_wp_login_redirect');
?>

If you don’t want to write any custom code, you can use the following plugins to achieve
similar results:

• iThemes security
• WP Admin

Add Custom .htaccess Rules for Locking Down wp-admin
If you are the only user that needs to log in to the backend of your application, or if you
only have a handful of backend users, you can restrict access to the backend by certain
IP addresses. Create a new .htaccess file in the wp-admin directory of your WordPress

Hardening Your WordPress Install | 221

www.it-ebooks.info

http://bit.ly/ithemes-sec
http://bit.ly/lockdown-wp
http://www.it-ebooks.info/

install and add the following code, replacing 127.0.0.1 with your actual external IP
address. Go to http://ipchicken.com/ if you are not sure of your external IP address:

order deny,allow
allow from 127.0.0.1 #(repeat this line for multiple IP addresses)
deny from all

If you suspect that certain IP addresses hitting your application are bots or malicious
users, you can block them by their IP addresses with the following code:

order allow,deny
deny from 127.0.0.1 #(repeat this line for multiple IP addresses)
allow from all

If people really want to get around their banned IP address, they will use a proxy server.

If you think your IP address of you or your backend users may change often or you have
way too many backend users to manage all of their IP addresses, you can add a separate
username and password to access the wp-admin directory. This adds a nice second layer
of authentication because all of your backend users will be required to enter an htaccess
username and password and their standard WordPress username and password:

AuthType Basic
AuthName "restricted area"
AuthUserFile /path/to/protected/dir/.htpasswd
require valid-user

Notice the AuthUserFile line; you will need to create a .htpasswd file somewhere in a
directory above or outside of your WordPress install. In this file, you will need to add
a username and password. The password can’t just be plain text; use a tool like htaccess
password generator to create an encrypted password.

So the username/password for:

letmein/Pr3tTyPL3a$3!

after encryption should be:

letmein:E5Dj7cUaQVcN.

Add the entire encrypted string letmein:E5Dj7cUaQVcN. to your .htpasswd file; and
when users try to go to /wp-admin, they will be prompted for a username and password.
Make sure to let your backend users know what this username and password is and tell
them not to share it with anybody.

Backup Everything!
It is important to make regularly scheduled backups of your site’s content (your data‐
base) as well as the wp-content folder. This makes it much easier to restore your site in
the event that it does fall victim to a hacker. We recommend scheduling a backup at the

222 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://bit.ly/htaccess-pw
http://bit.ly/htaccess-pw
http://www.it-ebooks.info/

very least once a week; but depending upon how much new content you are adding,
you may feel that you need to increase or decrease the frequency. Of course a daily
backup is always the best choice.

Scan Scan Scan!
Scanning or monitoring your application is essential to know if you have been at‐
tacked. If your application ever gets hacked, it is important to know right away so you
can immediately address the issue.

Be proactive about protecting your web application against malware. There are several
services that will scan your web applications for you so you can take a more hands-off
approach. We recommend using Sucuri. Not only will Sucuri find malware and alert
you if your application has been infected, but it will also clean it up for you. Tony Perez,
the COO of Sucuri, is also a former US Marine and a martial arts master, so why wouldn’t
you want Sucuri to have your back? Sucuri also has a great security plugin for WordPress.

Useful Security Plugins
Below are some very useful and powerful WordPress plugins that will help you increase
security for your application and also help you to recover quickly if you to fall victim
to a malicious attack.

Spam-Blocking Plugins

Akismet
This plugin is used to block comment spam from getting through to your site. It was
developed by Automattic, also the creators of WordPress, and therefore comes standard
with any new WordPress install. Although the plugin will be installed on your site, you
will need to activate it by registering for an API key at Akismit.com. An API key is free
if your site is for personal use; however, there is a small charge for business websites.
The way Akismet works is each time a comment is posted to your site, Akismet will run
it through a series of tests to ensure it is a real comment, and if it is identified as spam,
it is automatically moved to the spam folder in your dashboard. This saves you tons of
time from having to sort through all of your comments and determine which ones are
spam or legitimate comments.

Bad Behavior
This plugin works to block link spam from your site and functions best when run in
conjunction with another spam service. It works to not only look at the content of the
spam, but also looks at the method through which the spam is being delivered by the
spammer and the software being used, and blocks that as well.

Scan Scan Scan! | 223

www.it-ebooks.info

http://sucuri.net/
http://bit.ly/sucuri-plugin
https://akismet.com/
http://bit.ly/bad-behavior
http://www.it-ebooks.info/

Backup Plugins
Backups are very helpful to have in the event that your site is compromised. Here are a
few popular backup plugins.

Backup Buddy
This plugin works to make backups of all of the content on your WordPress site for
safekeeping, restoring, or moving your site. Backups can be scheduled on a recurring
basis and the file can then be downloaded to your computer, emailed to you, or sent off
to the storage location of your choice such as Dropbox or an FTP server. This plugin
also features a restore option that will easily restore your themes, widgets, and plugins.
Backup Buddy also allows you to easily move your site to a new server or domain right
from the WordPress dashboard, which comes in handy if you work on a dev server and
then move the sites over to a production environment upon launch.

VaultPress
VaultPress is another plugin created by the team at Automattic and offers users the
opportunity to have all of their site content backed up in real time on cloud servers.
Once installed, this plugin will automatically detect any changes to the content on your
site as well as site settings and then update the backup copy with those changes. The
plugin also features a one-click database restore in the event that your site ever becomes
compromised. This is a premium plugin, meaning there is a fee for service, and different
levels are offered. The premium version of the plugin also includes a daily security scan
of your site to detect any issues as well as fixes for those issues.

Scanner Plugins

WP Security Scan
This is a free plugin that will perform a scan of your site and detect any areas of vul‐
nerability in your site’s security. It will then suggest fixes for any of the issues it finds.
One of the important security issues this plugin helps with is changing your database
table prefix, which can be tricky if you are not that familiar with the standard WordPress
database structure. It also helps you to hide which version of WordPress you are using,
which is information that hackers look for to use against you when attacking your site.
This plugin was developed by WebsiteDefender.com, which also offers a service to
monitor your website for potential security threats, including malware and hacker ac‐
tivity.

Exploit Scanner
This plugin will scan through all the files on your site and then alert you if it comes
across anything that looks like it could be a potential threat.

224 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://bit.ly/backup-b
http://vaultpress.com/
http://bit.ly/acunetix-wp
http://bit.ly/acunetix-sec
http://bit.ly/acunetix-sec
http://bit.ly/acunetix-sec
http://bit.ly/exploit-scan
http://www.it-ebooks.info/

BBQ
Block Bad Queries works as a type of firewall for your site by scanning all incoming
traffic and then blocking all kinds of different malicious requests.

Antivirus-Once
Once this plugin is installed and activated, it will run a daily scan on your theme template
files and database tables and alert you of any potential problems with email notifications.
It will also add a message into the WordPress admin bar to alert you of any viruses.

Login and Password-Protection Plugins

Limit Login Attempts
This is a great plugin to fight against brute-force attacks like someone running an au‐
tomated script that will try to login to WordPress using random combinations of words.
By default, WordPress will allow an unlimited amount of login attempts. This plugin
limits the number of login attempts. If someone tries x times to log in and fails each
time, she will be blocked from attempting to log in again for a set amount of time.

Ask Apache Password Protect
This plugin is different from other WordPress security plugins in that it works at the
network level to prevent attacks rather than at the site level. You choose a unique user‐
name and password that then protect your login page and entire wp-admin folder. This
plugin does require the use of an Apache web server and web host support for .htac‐
cess files.

Writing Secure Code
You want to make sure any custom code you write is secure and isn’t hackable. If you
take notice and apply the following methods, you should be in pretty good shape against
attacks.

Check User Capabilities
Each of your users has unique standard or custom roles and capabilities. If you are
writing some code that provides custom functionality for your application’s adminis‐
trators, then make sure to give administrators and only administrators access to it. There
are a few built-in WordPress functions for telling you if a user has certain roles or
capabilities. All of these functions are located in wp-includes/capabilities.php and return
a boolean of whether the user has the passed-in role name or capability. You can pass
in any default or custom-made roles or capabilities.

Writing Secure Code | 225

www.it-ebooks.info

http://bit.ly/bbq-wp
http://bit.ly/antivirus-wp
http://bit.ly/limit-login
http://bit.ly/ask-apache
http://www.it-ebooks.info/

user_can($user, $capability)
Whether a particular user has a particular role or capability.

• $user—A required integer of a user ID or an object of the user.
• $capability—A required string of the capability or role name.

current_user_can($capability)
Whether the current user has a particular role or capability.

• $capability—A required string of the capability or role name.

current_user_can_for_blog($blog_id, $capability)
Whether the current user has a particular role or capability for a particular site on a
multisite network.

• $user—A required integer of a blog ID.
• $capability—A required string of the capability or role name.

In the following code, we don’t want to let ordinary users into the backend of our ap‐
plication. We want them to only interact with the custom UI we created within the theme
on the frontend so we will redirect anybody that is not an administrator and may wander
to /wp-admin back to the frontend:

<?php
function schoolpress_admin_check() {
 global $user_ID;
 if (!user_can($user_ID, 'administrator'))
 wp_redirect(site_url());
}
add_action('admin_init', 'schoolpress_admin_check');
?>

For a complete reference of standard default WordPress roles and
capabilities, see Chapter 6 or the WordPress codex.

Custom SQL Statements
Sometimes the built-in WordPress functions that interact with the database may not be
enough for your needs, and depending on what you are building, you may want to write
custom SQL statements. When writing your own SQL statements, you need to make

226 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://bit.ly/roles-caps
http://www.it-ebooks.info/

1. In technical terms, “super duper long” is equal to about 4 GB of data.

sure they are written in a way that will not allow for any potential SQL injections. First
of all, always use the $wpdb object and make sure to escape and prepare all custom SQL
statements.

As we talked about in Chapter 3, the $wpdb object can be used to access any standard
or custom tables in your WordPress database and provides easy-to-use methods for
doing so. One very important thing to remember is that when writing custom queries
with any dynamic values being passed in, you need to use the esc_sql() function or
the prepare() method to sanitize and escape those dynamic values. By sanitizing and
escaping dynamic values, you are making sure those values are not made up of invalid
characters and are not any malicious SQL code that can hijack your query (SQL injec‐
tions).

The esc_sql() and $wpdb->prepare() functions are covered in detail in Chapter 3.

Data Validation, Sanitization, and Escaping
DO NOT TRUST YOUR USERS! Again, DO NOT TRUST YOUR USERS! Don’t be
that web application, website, or blog that spreads malware.

Validate, sanitize, and escape every piece of data going into and coming out of your
database. You want to make sure that the data your users are submitting to your database
is in the format it should be in; the database doesn’t care what the data is as long as the
data being submitted is of the same datatype.

For example, let’s say you have a custom form used to collect user data with a textbox
for date of birth. You plan on storing the DOB as user meta in the meta_value column
of the wp_usermeta table. The meta_value column has a datatype of longtext, meaning
the value can be super duper long1 and the database isn’t going to care what value you
store there. It’s up to you as the developer to make sure the data being stored as DOB is
a date and nothing else.

So what exactly is the difference between validation, sanitization, and escaping?

• Validating is the process of making sure the data received from the end user is in
the correct format you expect it to be in. You want to validate data before saving it
into the database.

• Sanitizing is the process of cleaning data received from the end user before saving
it to the database.

• Escaping is the process of cleaning data you may already have before displaying it
to the end user.

Writing Secure Code | 227

www.it-ebooks.info

http://www.it-ebooks.info/

Now you know!

You want to validate and sanitize data before putting it into your database. When pulling
data out of your database, you want to sanitize it just to be safe in case somehow you
are storing unsanitized data.

PHP has validation and sanitization functions, but WordPress has a bunch of helper
functions built-in; and this is a book about WordPress, so let’s talk about some of those
functions.

Most validation and sanitization helper functions are located in wp-
includes/formatting.

esc_url($url, $protocols = null, $_context = display)
Checks and cleans a URL by checking if it has the proper protocol, stripping invalid
characters and encoding special characters. Use this if displaying a URL to an end user:

• $url—A required string of the URL that needs to be cleaned.
• $protocols—An optional array of whitelisted protocols. Defaults to array(http,
https, ftp, ftps, mailto, news, irc, gopher, nntp, feed, telnet, mms,

rtsp, svn) if not specifically set.
• $context—An optional string of how the URL is being used. Defaults to display,

which sends the URL through wp_kses_normalize_entities() and replaces &
with & and ‘ with '.

esc_url_raw($url, $protocols = null)

This function calls the esc_url() function but passes db as the value for the $_con
text parameter. Do not use this function for displaying URLs to the end user; only use
it in database queries.

esc_html($text)
Escape HTML blocks in any content. This function is a nice little wrapper for the
_wp_specialchars() function which, basically converts a number of special characters
into their HTML entities:

• $text—A required string of the text you want to escape HTML tags on.

228 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

esc_js($text)
Escapes strings in inline JavaScript. Escaped strings need to be wrapped in single quotes
for this to work:

• $text—A required string of the text you want to escape single quotes, HTML special
characters (" < > &), and fix line endings on.

esc_attr($text)
Escapes HTML attributes and encodes such characters as <, >, &,”, and ‘. This is important
to use when including values in form input elements such as ID, name, alt, title, and
value:

• $text—A required string of the text you want to escape HTML attributes on.

esc_textarea($text)

Escaping for textarea values. Encodes text for use inside a <textarea> element:

• $text—A required string of the text you want to escape HTML on.

sanitize_option($option, $value)
This function can be used to sanitize the value of any predefined WordPress option.
Depending on what option is being used, the value will be sanitized via various func‐
tions:

• $option—A required string of the name of the option.
• $value—A required string of the unsanitized option value you wish to sanitize.

sanitize_text_field($str)
Sanitizes any string input by a user or pulled from the database. Checks for invalid
UTF-8; converts single < characters to entity; strips all tags; removes line breaks, tabs,
and extra white space; and strips octets:

• $str—The required string you want to sanitize.

sanitize_user($username, $strict = false)
This function cleans a username of any illegal characters:

Writing Secure Code | 229

www.it-ebooks.info

http://www.it-ebooks.info/

• $username—A required string of the username to be sanitized.
• $strict—An optional boolean that if set to true will limit the username to specific

characters.

sanitize_title($title, $fallback_title = '')
Sanitizes a title stripping out any HTML or PHP tags, or returns a fallback title for a
provided string:

• $title—A required string of the title to be sanitized.
• $fallback_title—An optional string to use if the title is empty.

sanitize_email($email)
Sanitizes an email address by stripping out any characters not allowed in an email ad‐
dress:

• $email—The email address to be sanitized.

sanitize_file_name($filename)
Sanitizes a filename, replacing whitespace with dashes. Removes special characters that
are illegal in filenames on certain operating systems and special characters requiring
special escaping to manipulate at the command line. Replaces spaces and consecutive
dashes with a single dash. Trims period, dash, and underscore from beginning and end
of filename:

• $filename—Required string of the file name to be sanitized.

wp_kses($string, $allowed_html, $allowed_protocols = array ())
This function makes sure that only the allowed HTML element names, attribute names,
and attribute values plus only sane HTML entities will occur in the string you pro‐
vide. You have to remove any slashes from PHP’s magic quotes before you call this
function:

• $string—A required string that you want filtered through kses.
• $allowed_html—A required array of allowed HTML elements.
• $allowed_protocols—An optional array of allowed protocols in any URLs in the

string being filtered. The default allowed protocols are http, https, ftp, mailto,
news, irc, gopher, nntp, feed, telnet, mms, rtsp, and svn. This covers all common

230 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

link protocols, except for javascript, which should not be allowed for untrusted
users.

The following code validates and sanitizes an email address:

<?php
// let's pretend that a user added an email address "brian @ webdevstudios.com"
$user_email = 'brian @ webdev$tudios.com';

// we can check if this is a valid email
$user_email = is_email($user_email);

// we know it's not because it's set to nothing from is_email()
if (! $user_email)
 echo 'invalid email
';

// let's try again with sanitizing the email
$user_email = 'brian @ webdev$tudios.com';

// use sanitize_email() to try to fix any invalid email
$user_email = sanitize_email($user_email);

$user_email = is_email($user_email);

if (! $user_email)
 echo 'invalid email
';
else
 echo 'valid email: ' . $user_email;
?>

Nonces
Nonce stands for “number used once,” and using nonces is critical to protecting your
application from CSRF (cross-site request forgery) attacks.

Normally your server-side scripts for form processing are processing forms from your
own site. People visit your site, log in, and submit a form to perform some action on
your site. However, if your server-side code were simply looking for $_POST values to
determine what to do, those values could be submitted from any form, even forms on
other websites.

The first line of defense is to check that a user is really logged in and has the capabilities
to do the requested action. However, this isn’t enough to stop CSRF attacks because you
might be logged in on your WordPress site (e.g., in a background tab) while some ma‐
licious code on another site/tab kicks off the form request with the correct $_POST
variable to send a spammy message to your friends or initiate account deletion or
something else you don’t want to do.

Writing Secure Code | 231

www.it-ebooks.info

http://www.it-ebooks.info/

What’s needed is a way to make sure that the request comes from the WordPress site
and not another site. This is what a nonce does. The basic outline of using a nonce is as
follows:

1. Generate a nonce string every time a page is loaded.
2. Add the nonce string as a hidden element on the form.
3. When processing a submitted form, generate the nonce the same way and check

that it matches the one submitted from the form.

Because the nonce is generated using a combination of the secret salt keys in your wp-
config.php and the server time, it is very hard for attackers to guess the nonce string for
their own forms.

Nonces are useful for nonform links and AJAX calls as well. The process is basically the
same:

1. Generate a nonce string every time a page is loaded.
2. Add the nonce string as a parameter to the URL.
3. When processing the request, generate the nonce the same way and check that it

matches the one submitted through the URL.

Whether protecting your forms, links, or AJAX requests, WordPress has a few helper
functions to make this process very easy to implement.

wp_create_nonce($action = -1)
This function creates a random token that can only be used once and is located in wp-
includes/pluggable.php:

$action—An optional string or int that describes what action is being taken for the
nonce created. You should always set an action to be more secure:

<?php
function schoolpress_footer_create_nonce(){
 $nonce = wp_create_nonce('random_nonce_action');
 $url = add_query_arg(array('sp_nonce' => $nonce));
 echo '<p>Verify this Nonce</p>';
}
add_action('wp_footer', 'schoolpress_footer_create_nonce');
?>

wp_verify_nonce($nonce, $action = -1)
This function is used to verify that the correct nonce was used within the allocated time
limit. If the correct nonce is passed into this function and everything checks out OK,

232 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

2. The wp_verify_nonce() function will return 1 if the nonce is under 12 hours old. If the nonce is between
12 and 24 hours old, it will return 2. If it is older than 24 hours old, it will return false. This way you can
test if the result evaluates to true or if you wanted to check for a slightly fresher nonce, you could check if it
is equal to 1 exactly.

then the function will return a value that evaluates to true.2 If not, it will return
false. This function is located in wp-includes/pluggable.php:

• $nonce—A required string of the nonce value being used to verify.
• $action—An optional string or int that should be descriptive to what is taking place

and should match the action from when the nonce was created.

<?php
function schoolpress_init_verify_nonce(){
 if (isset($_GET['sp_nonce'])
 && wp_verify_nonce($_GET['sp_nonce'], 'random_nonce_action')) {
 echo 'You have a valid nonce!';
 } else {
 echo 'You have an invalid nonce!';
 }
}
add_action('init', 'schoolpress_init_verify_nonce');
?>

check_admin_referer($action = -1, $query_arg = _wpnonce)

This function calls the wp_verify_nonce function, so it verifies nonces but also checks
to see that the referrer or the page that got you to the current page you are on is from
the same website. This function is located in wp-includes/pluggable.php:

• $action—An optional string, but you should specify a nonce action to be verified.
• $query_arg—An optional string of the query argument that has the nonce as its

value.

<?php
// checking the same nonce "sp_nonce" that was created earlier
function schoolpress_init_check_admin_referer(){
 if (isset($_GET['sp_nonce'])
 && check_admin_referer('random_nonce_action', 'sp_nonce')) {
 echo '<p>You have a valid nonce!</p>';
 } else {
 echo '<p>You have an invalid nonce!</p>';
 }
}
add_action('init', 'schoolpress_init_check_admin_referer');
?>

Writing Secure Code | 233

www.it-ebooks.info

http://www.it-ebooks.info/

wp_nonce_url($actionurl, $action = -1)

This function also utilizes the wp_create_nonce() function and adds a nonce to any
URL. If you create any actions based off of a query string, you should always tie a nonce
to your URL with this function:

• $actionurl—A required string of the URL to add a nonce action to.
• $action—An optional string for the action name. You should always set this.

This function is located in wp-includes/functions.php:

<?php
// simple url with querystring example
function schoolpress_footer_nonce_url(){
 $url = wp_nonce_url(
 add_query_arg(array('action' => 'get_users')),
 'get_users_nonce'
);
 echo '<p>Get Users</p>';
}
add_action('wp_footer', 'schoolpress_footer_nonce_url');

// querystring action
function schoolpress_footer_nonce_url_action(){
 // check if querystring action is get_users and for the nonce
 if (isset($_GET['action'])
 && 'get_users' == $_GET['action']
 && check_admin_referer('get_users_nonce')) {
 echo 'Your action: ' . $_GET['action'];
 // or get your users and display them here...
 }
}
add_action('init', 'schoolpress_footer_nonce_url_action');
?>

wp_nonce_field($action = -1, $name = “_wpnonce”, $referer = true , $echo = true)

This function retrieves or displays a hidden nonce field in a form. It has the wp_cre
ate_nonce() function baked into it, so you should always use this nice helper function
when dealing with forms.

The nonce field is used to validate that the contents of the form came from the location
on the current site and not somewhere else. The nonce does not offer absolute protec‐
tion, but should protect against most cases. It is very important to use a nonce field in
forms.

The $action and $name parameters are optional, but if you want to have better security,
it is strongly suggested to set those two parameters. It is easier to just call the function
without any parameters, because validation of the nonce doesn’t require any parameters,

234 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

but since crackers know what the default is, it won’t be difficult for them to find a way
around your nonce and cause damage.

The input name will be whatever $name value you gave. The input value will be the nonce
creation value. This function is located in wp-includes/functions.php:

• $action—An optional string for the action name. You should always set this.
• $name—An optional string for the nonce name. You should always set this.
• $referer—An optional boolean of whether to set the referer field for validation. The

default value is true.
• $echo—An optional boolean of whether to display or return a hidden form field.

The default value is true.

<?php
// simple submission form example
function schoolpress_footer_form(){
 ?>
 <form method="post">
 <?php // create our nonce
 wp_nonce_field('email_list_form', 'email_list_form_nonce');
 ?>
 <h3>Join our email list</h3>
 Email Address: <input type="text" name="email_address">
 <input type="submit" name="submit_email" value="Submit">
 </form>
 <?php
}
add_action('wp_footer', 'schoolpress_footer_form');

// form action
function schoolpress_footer_form_action(){
 if (isset($_POST['submit_email'])
 && isset($_POST['email_address'])
 && check_admin_referer('email_list_form',
 'email_list_form_nonce')) {
 echo 'You submitted: ' . $_POST['email_address'];
 // or process your form here...
 }
}
add_action('init', 'schoolpress_footer_form_action');
?>

check_ajax_referer($action = -1, $query_arg = false, $die = true)
When using AJAX, you should still be using nonces. This function allows you to do a
nonce and referer check while processing an AJAX request. This function is located in
wp-includes/pluggable.php:

Writing Secure Code | 235

www.it-ebooks.info

http://www.it-ebooks.info/

• $action—An optional string of the nonce action being referenced.
• $query_arg—An optional string of where to look for nonce in $_REQUEST.
• $die—An optional boolean of whether you want to AJAX script to die if an invalid

nonce is found.

Throughout the book, you may have noticed code snippets that didn’t use nonces or
sanitize data. We did this to try to keep the code examples short and sweet, but you
should always use nonces and sanitize your data. Any custom form submission or URL
with custom query strings should utilize nonces, and every time you write $_POST['any
thing'] or $_GET['anything'], they should be wrapped in a sanitization or escaping
function.

236 | Chapter 8: Secure WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

JavaScript, jQuery, and AJAX

JavaScript is a major component of any modern web app. jQuery is a popular JavaScript
library that makes doing many things with JavaScript a lot easier. One of the things that
is easier to do with jQuery is AJAX calls. This chapter will not teach you how to code
in JavaScript or jQuery. This chapter will, however, teach you how to properly integrate
your JavaScript code into your WordPress app.

The term “JavaScript,” when used in this chapter and throughout the
book, refers to core JavaScript or any code written in JavaScript that
runs in the client browser, including jQuery and AJAX calls done in
jQuery.

What Is AJAX?
The term AJAX stands for “Asynchronous JavaScript and XML” and is a way to use
JavaScript to query the server after a page has already loaded. Historically, XML data
would be returned and then processed by the browser using more JavaScript. These
days, we more typically send back JSON-encoded data or straight up HTML to be in‐
corporated into the app. In this chapter, we will cover executing an AJAX call via the
jQuery ajax() method and also through the new Heartbeat API for WordPress.

What Is JSON?
JSON stands for “JavaScript Object Notation” and is a machine and human-readable
format for transmitting data. It is especially useful when working with JavaScript, since
a properly encoded JSON statement will be evaluated by JavaScript with no extra pro‐
cessing. To work with JSON in PHP, we will use the json_encode and json_decode
functions that have been part of PHP core since version 5.2.

237

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress only requires PHP version 4.3, which doesn’t include the json_encode and
json_decode functions. WordPress has its own versions of these functions that are used
if the native PHP functions are not available. Even so, it’s a good idea to run the latest
version of PHP supported by your hosting environment.

jQuery and WordPress
WordPress comes installed with the latest version of jQuery, which is used in the admin
dashboard for various UI and AJAX-related scripting. Because jQuery is already on your
server, including it in the frontend of your WordPress app is a breeze.

The jQuery JS file is located at /wp-includes/lib/js/jquery.js. Typically you would add a
link like this to the <head> tag of your website to load jQuery:

<script lang="JavaScript" src="/wp-includes/lib/js/jquery.js" />

This will work if added to your theme’s header.php or through the wp_head hook;
however, the proper way to include a JavaScript file in your WordPress site is to use the
wp_enqueue_script() function. You can add the line wp_en

queue_script('jquery'); to an init function called by the inside of your main plugin
file, like so:

function sp_enqueue_scripts()
{
 wp_enqueue_script('jquery');
}
add_action('init', 'sp_enqueue_scripts');

The first parameter of the wp_enqueue_script() function is a label for the JavaScript
file to enqueue. WordPress already knows what jquery is and where it’s located, so that
is the only parameter you need to enqueue it.

Enqueuing Other JavaScript Libraries
To enqueue other JavaScript libraries that WordPress doesn’t already know about,
pass the full list of parameters. Your main app plugin may include code like this to load
jQuery and any number of required JavaScript libraries. Also, instead of building your
function on the init hook, you should use the wp_enqueue_scripts and admin_en
queue_scripts hooks. The wp_enqueue_scripts hook fires on the frontend just before
enqueuing scripts, while the admin_enqueue_scripts hook fires in the dashboard just
before enqueuing scripts:

<?php
//frontend JS
function sp_wp_enqueue_scripts() {
 wp_enqueue_script('jquery');
 wp_enqueue_script(

238 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

 'schoolpress-plugin-frontend',
 plugins_url('js/frontend.js', __FILE__),
 array('jquery'),
 '1.0'
);
}
add_action("wp_enqueue_scripts", "sp_wp_enqueue_scripts");

//admin JS
function sp_admin_enqueue_scripts() {
 wp_enqueue_script(
 'schoolpress-plugin-admin',
 plugins_url('js/admin.js', __FILE__),
 array('jquery'),
 '1.0'
);
}
add_action('admin_enqueue_scripts', 'sp_admin_enqueue_scripts');
?>

Using wp_enqueue_scripts and admin_enqueue_scripts lets you load different JS files
on the frontend and backend of your site. You could add other checks in here to make
sure that jQuery is only loaded on certain pages, which could improve load times on
those pages that don’t need jQuery loaded. Common methods include checking at‐
tributes of the global $post or checking $_REQUEST values used in the admin like $_RE
QUEST['page'] or $_REQUEST['post_type'].

Remember, the first parameter of the wp_enqueue_script() function is a reference
label. The second parameter of the wp_enqueue_script() function tells WordPress where
the script is located. The plugins_url() function is used to figure out the URL relative
to the current file __FILE__. This works when this code is included in the main plugin
file. You would pass dirname(__FILE__) as the parameter to this call if the file you are
editing is in a subdirectory of the plugin.

The third parameter of the wp_enqueue_script() function allows you to state depen‐
dencies for your script. By passing array('jquery') for our frontend.js and admin.js
scripts, we make sure that jQuery is loaded first.

Where to Put Your Custom JavaScript
Once again we will run into situations where we need to decide where to put a certain
bit of code. Should it go into the theme code or the plugin code? Here are the general
rules we use when deciding where a particular bit of JavaScript code will go:

1. If the code will be only used once and is generally specific to the page it is used on,
it is coded directly into that page within a <script> tag.

jQuery and WordPress | 239

www.it-ebooks.info

http://www.it-ebooks.info/

1. Standalone JavaScript files can be cached or served through a content delivery network (CND). JavaScript
embedded in dynamic PHP files cannot be cached as easily.

2. If the JavaScript is used more than once (a function or module) and is related to
theme functionality or UI, it is placed in a JS file within the theme (e.g., /themes/
schoolpress/js/schoolpress.js).

3. If the JavaScript is used more than once on admin screens of your app, it is placed
in an admin.js file inside of your plugin (e.g., /plugins/schoolpress/js/admin.js).

4. If the JavaScript is used more than once on the frontend of your app, but not part
of the theme UI, it is placed in a frontend.js file inside of your plugin (e.g., /plugins/
schoolpress/js/frontend.js).

5. If splitting some JS code into its own file, to be loaded on specific pages, will result
in a needed increase in performance, than that code will be placed in a separate JS
file.1

These rules are specific to how we like to develop and are only a suggestion. Some
developers will cringe particularly hard at the thought of adding JavaScript code inside
of script tags instead of placing all JavaScript inside of .js files. If you like coding this
way or perhaps have a dedicated JavaScript programmer on your team, by all means put
all of your JavaScript code inside of .js files.

The important thing is that you understand how your JavaScript files and code are
organized so that working on your site is intuitive.

AJAX Calls with WordPress and jQuery
AJAX calls in WordPress will require two components: the JavaScript code on the fron‐
tend to kick off the AJAX request and the PHP code in the backend to process the request
and return HTML or JSON-encoded data.

Say you want to adjust your signup page to automatically check if the username entered
has been used already. You could warn the person signing up before he hits the submit
button and allow him to change the username he picked, saving a bit of grief.

The first thing we need to do is add a quick JavaScript to the head of our pages to define
our ajaxurl. This is the URL that all AJAX queries will run through. It looks like this:

<script type="text/JavaScript">
var ajaxurl = '/wp-admin/admin-ajax.php';
</script>

In the WordPress dashboard, this script will be embedded by default. But for frontend
AJAX, we’ll need to embed it ourselves. Here’s the code to define the ajaxurl variable
for frontend AJAX:

240 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

function my_wp_head_ajax_url()
{
?>
<script type=”text/JavaScript”>
var ajaxurl = '<?php echo admin_url("admin-ajax.php");?>';
</script>
<?php
}
add_action('wp_head', 'my_wp_head_ajax_url');

Now the variable ajaxurl is available to the rest of the JavaScript on our frontend pages
and can be used in our AJAX calls. Here is the JavaScript code to add to the bottom of
the registration page to perform the username check:

<?php
//our JS for the page
function my_wp_footer_registration_JavaScript()
{
 //make sure we're on the registration page
 if(empty($_REQUEST['action']) || $_REQUEST['action'] != ‘register’)
 return;
?>
<script>
 //wait til DOM is loaded
 jQuery(document).ready(function() {
 //var to keep track of our timeout
 var timer_checkUsername;

 //detect when the user_login field is changed
 jQuery('#user_login').bind.('keyup change', function() {
 //use a timer so check is triggered 1 second after they stop typing
 timer_checkUsername = setTimeout(function(){checkUsername();}, 1000);
 });
 });

 function checkUsername()
 {
 //make sure we have a username
 var username = jQuery('#user_login').val();
 if(!username)
 return;

 //check the username
 jQuery.ajax({
 url: ajaxurl,type:'GET',timeout:5000,
 dataType: 'html',
 data: "action=check_username&username="+username,
 error: function(xml){
 //timeout, but no need to scare the user
 },
 success: function(response){
 //hide any flag we may have already shown

AJAX Calls with WordPress and jQuery | 241

www.it-ebooks.info

http://www.it-ebooks.info/

 jQuery('#username_check').remove();

 //show if the username is good (1) or taken (0)
 if(response == 1)
 jQuery('#user_login').after(
 'Okay'
);
 else
 jQuery('#user_login').after(
 'Taken'
);
 }
 });
 }
</script>
<?php
}
add_action('wp_footer', 'my_wp_footer_registration_JavaScript');
?>

The preceding code is hooked into wp_footer so the JavaScript will be added to the end
of the HTML output. We first check that $_REQUEST['action'] == "register" to
make sure we’re on the default WP registration page.

If you’re using a plugin like Paid Memberships Pro that has its own registration page,
you’ll want to use a check like if(!is_page("membership-checkout")) to check which
page you are on. You’ll also need to make sure that the #user_login check in your
JavaScript code is updated to use the ID used for the username field on the registration
page.

In the code, we use jQuery(document).ready() to detect that the DOM is loaded and
then use jQuery('#user_login').bind('keyup change', ...) to detect when a user
has either typed inside the field or otherwise changed it. When this happens, we use
setTimeout() to queue up a username check in one second. If the user types again
before the timer runs, it is reset to wait one second again. The effect is that one second
after the user stops typing or changing the field, the checkUsername() function is kicked
off.

In the checkUsername() function, we have the jQuery.ajax() call. Before we do that
though, we check the value from the username field to see if it’s empty or not.

In the jQuery.ajax() call, we set the URL to ajaxurl, which should have been set via
wp_head earlier.

We set the type of call to GET. You can also use the POST method. The DELETE and
PUT methods are also available, but may not be supported by all browsers. Use the same
logic you would when deciding which type to use on a <form> you are submitting to
decide which method to use in an AJAX call. If you are “getting” data like we are in this

242 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

example, GET makes sense. If you are submitting data to be saved, you can use the POST
method.

We set a timeout of 5,000 (or 5 seconds) here. After this time, the request will be cancelled
and the defined error action will be kicked off. You should set the timeout value based
on the reasonable amount of time it might take your server to process this particular
request. If you set it too low, you will prematurely cancel requests. If you set it too high,
people will be waiting really long for requests that may have hung up on the server side.

We set the datatype to html here. This tells jQuery to take the output and place it into
a string. A datatype of json will evaluate the output and place it into a JavaScript object
variable. There are a few other datatypes including xml, jsonp, script, and text. The
jQuery documentation addresses when you would use these and how jQuery processes
each datatype.

We set the data to "action=check_username&username="+username, which will pass
our defined action and the username as parameters to the wp-admin-ajax.php script
and our service-side code.

Then we set a handler in case of errors and in case of success. In case of error, you could
alert the user, but since this isn’t a critical function, we just go about our business. In
case of success, we remove the old #username_check element and append an “OK” or
“Taken” message after the username field.

jQuery hosts the full API documentation for the jQuery.ajax() on
its website.

Now let’s see the backend code. Here is the code you would put into functions.php, your
custom plugin, or a .php in your plugin’s /services/ directory to listen for the AJAX
request and send back a 1 or 0 if a username if available or not:

<?php
//detect AJAX request for check_username
function wp_ajax_check_username() {
 global $wpdb;
 $username = $_REQUEST['username'];

 $taken = $wpdb->get_var("
 SELECT user_login
 FROM $wpdb->users
 WHERE user_login = '" . $wpdb->escape($username) . "' LIMIT 1"
);

 if ($taken)
 echo "0"; //taken

AJAX Calls with WordPress and jQuery | 243

www.it-ebooks.info

http://bit.ly/ajax-jq
http://www.it-ebooks.info/

 else
 echo "1"; //available
}
add_action('wp_ajax_check_username', 'wp_ajax_check_username');
add_action('wp_ajax_nopriv_check_username', 'wp_ajax_check_username');
?>

• wp_ajax_{action}—Runs for logged-in users
• wp_ajax_nopriv_{action}—Runs for nonusers

On the registration page, users are by definition not logged in, so we need to use the
wp_ajax_nopriv_ hook. But we may also want to use this check on the add new user
screen in the admin, so we’ll hook into wp_ajax_ as well to handle that case.

If you have an AJAX service that will only be used by users, just use the wp_ajax_
hook. If you need your service available for users and nonusers, you’ll need to use both
hooks.

Also, notice how the action parameter we’re looking for (“check_username”) is added
to the hook in the action definition. This hook will only fire if $_REQUEST['action']
== "check_username".

Managing Multiple AJAX Requests
When working with AJAX requests, it’s important to keep track of them. If not, you can
put undue stress on your server and the client’s browser, leading to a lockup of their
session or the entire site.

For example, in the preceding code, we wait one second after the username field is
updated before kicking off the AJAX request to check if the username is available. But
once the request goes out, the user might keep on typing, kicking off another AJAX
request. If your server isn’t able to get back within one second, those requests might
start to build up on each other.

Now, our username checker might not have too much potential to get out of hand, but
it’s possible in a lot of situations. A simple example would be one where an AJAX request
is kicked off when a user clicks a button. If the user clicks the button 20 times, that could
be 20 hits on your server. So keep track of them.

Generally, you want to do one of two things when managing your AJAX requests:

1. Keep a user from submitting a request if another request of the same type is still
processing.

2. Cancel any existing request of the same type if a new request is submitted.

244 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

Which option you use depends on what the AJAX request is doing. Generally if you are
“getting” data, you’ll want to cancel earlier requests and submit the fresher one. If you
are “posting” data, you’ll want to ignore the new request until the old one is completed.

Depending on your app and the request at hand, there will be many ways to disable or
cancel requests. Since the “complete” callback in jQuery’s ajax method is called whether
the request is successful or errors out, you can use it to re-enable a button or other
element that’s being used to kick off a specific AJAX request:

//Option #1: Disabling a button while an AJAX request is processing
jQuery('#button').click(function() {
 //disable the button
 jQuery(this).attr('disabled', 'disabled');

 //do the ajax request
 jQuery.ajax({
 url: ajaxurl,type:'GET',timeout:5000,
 dataType: 'html',
 error: function(xml){
 //error stuff
 },
 success: function(response){
 //success stuff
 }
 complete: function() {
 //enable the button again
 jQuery('#button').removeAttr('disabled');
 }
 });
});

Similarly, here is some code that will cancel an old request when a new one comes in:

//Option #2: Cancel an older request when a new one comes in
var ajax_request;
jQuery('#button').click(function() {
 //cancel any existing requests
 if(typeof ajax_request !== 'undefined')
 ajax_request.abort();

 //do the ajax request
 ajax_request = jQuery.ajax({
 url: ajaxurl,type:'GET',timeout:5000,
 dataType: 'html',
 error: function(xml){
 //error stuff
 },
 success: function(response){
 //success stuff
 }
 });
});

Managing Multiple AJAX Requests | 245

www.it-ebooks.info

http://www.it-ebooks.info/

Heartbeat API
Earlier in this chapter, we built an AJAX call that was triggered by a form field being
updated. Sometimes you will want certain updates to happen on their own periodically
as your web app is running. For example, you may want to check for new comments on
a discussion forum and automatically pull in fresh comments as they are posted. With
JavaScript, this is typically done by polling the backend every few seconds using an AJAX
call kicked off by the setInterval function. Alternatively, you can use the WordPress
Heartbeat API.

The Heartbeat API is new to WordPress 3.6 and can be used to facilitate quasi-realtime
updates in your app. Every 15 seconds (or less if you change the settings), your app will
send a heartbeat request from the client to the server and back. During this round trip,
you can do things like autosave app states or load fresh content. In WordPress 3.6, the
Heartbeat API is being used for autosaving posts, locking posts, and giving login expi‐
ration warnings. In this section, we’ll cover how you can use the Heartbeat API for your
app.

Like anything else, the Heartbeat API can seem complicated, but at its heart, it’s simply
a bunch of data passed back and forth from the client to the server through periodic
AJAX calls. Using hooks, you can tap into the data being sent or received to get the
information you need to and from the server.

Here is a minimal example demonstrating the Heartbeat API. The only thing this code
does is send a message marco to the server. If the server sees that message, it sends polo
back to the client. Both messages are logged to the JavaScript console, so every 15 sec‐
onds, you should see the following in your console:

Client: marco
Server: polo

Using the Heartbeat API can be broken down into three sections: initialization, client-
side JavaScript, and server-side PHP:

Initialization
//enqueue heartbeat.js and our JavaScript
function hbdemo_init()
{
 /*
 //Add your conditionals here so this runs on the pages you want, e.g.
 if(is_admin())
 return; //don't run this in the admin
 */

 //enqueue the Heartbeat API
 wp_enqueue_script('heartbeat');

246 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

 //load our JavaScript in the footer
 add_action("wp_footer", "hbdemo_wp_footer");
}
add_action('init', 'hbdemo_init');

This first function enqueues the heartbeat.js file and sets up an action to put our Java‐
Script code in the the footer via the wp_footer hook. If you only wanted this heartbeat
code to run on certain pages (very likely), you would put your checks here.

Client-side JavaScript
<?php
//our JavaScript to send/process from the client side
function hbdemo_wp_footer()
{
?>
<script>
 jQuery(document).ready(function() {
 //hook into heartbeat-send: client will send the message
 //'marco' in the 'client' var inside the data array
 jQuery(document).on('heartbeat-send', function(e, data) {
 console.log('Client: marco');

 //need some data to kick off AJAX call
 data['client'] = 'marco';
 });

 //hook into heartbeat-tick: client looks for a 'server'
 //var in the data array and logs it to console
 jQuery(document).on('heartbeat-tick', function(e, data) {
 if(data['server'])
 console.log('Server: ' + data['server']);
 });

 //hook into heartbeat-error to log errors
 jQuery(document).on('heartbeat-error',
 function(e, jqXHR, textStatus, error) {
 console.log('BEGIN ERROR');
 console.log(textStatus);
 console.log(error);
 console.log('END ERROR');
 });
 });
</script>
<?php
}
?>

This second function dumps our JavaScript into the footer. In the JavaScript code, we
use jQuery(document).ready() to run our code after the DOM has loaded. Then we
hook into three JavaScript events triggered by the Heartbeat API:

Heartbeat API | 247

www.it-ebooks.info

http://www.it-ebooks.info/

1. The heartbeat-send event is fired right before the heartbeat sends data back to the
server. To send your data, add a value to the “data” array passed through the event.

2. The heartbeat-tick event is fired when the server replies. To see what data the
server has sent, look for it in the “data” array that is passed through the event.

3. The heartbeat-error event is fired if there is an error in the jQuery.ajax() call
used to send the data to the server. You can include code here for debugging or
degrade nicely if AJAX doesn’t seem to be working in your production environment.

Server-side PHP
//processing the message on the server
function hbdemo_heartbeat_received($response, $data)
{
 if($data['client'] == 'marco')
 $response['server'] = 'polo';

 return $response;
}
add_filter('heartbeat_received', 'hbdemo_heartbeat_received', 10, 2);

This third PHP function in the previous example runs on the heartbeat_received
hook and processes the data from the client. We can add data to go back to the client by
updating the response variable.

Now let’s try a more realistic example. SchoolPress has a section of the assignments page
showing how many assignments have been submitted and how many are left. Let’s use
the Heartbeat API to update this number if new assignments have been posted.

In our template, the assignment count will be displayed something like this:

?>
<div>
 Submitted:

 <?php echo count($assignment->submissions);?>

 /
 <?php echo count($course->students);?>
</div>
<?php

Initialization
function sp_init_assignments_heartbeat()
{
 //Ignore if we're not on an assignment page.
 if(strpos($_SERVER['REQUEST_URI'], "/assignment/") === false)
 return;

248 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

 //enqueue the Heartbeat API
 wp_enqueue_script('heartbeat');

 //load our JavaScript in the footer
 add_action("wp_footer", "sp_wp_footer_assignments_heartbeat");
}
add_action('init', 'sp_init_assignments_heartbeat');

Things are pretty similar to our minimal example so far. We’re just making sure we don’t
run this code on nonassignment pages by checking for /assignment/ in the URI:

Client-side JavaScript
<?php
function sp_wp_footer_assignments_heartbeat()
{
 global $post; //post for current assignment
?>
<script>
jQuery(document).ready(function() {
 //heartbeat-send
 jQuery(document).on('heartbeat-send', function(e, data) {
 //make sure we have an array for SchoolPress data
 if(!data['schoolpress'])
 data['schoolpress'] = new Array();

 //send to server the post_id of this assignment and current count
 data['schoolpress']['assignment_post_id'] = '<?php echo $post->ID;?>';
 data['schoolpress']['assignment_count'] = jQuery('#assignment-count').val();
 });

 //heartbeat-tick
 jQuery(document).on('heartbeat-tick', function(e, data) {
 //update assignment count
 if(data['schoolpress']['assignment_count'])
 jQuery('#assignment-count').val(data['schoolpress']['assignment_count']);
 });
});
</script>
<?php
}
?>

Notice that we’re storing our data in a schoolpress array within the data array. We’ll
store all Heartbeat-related data in this array as a kind of namespacing to make sure our
variable names don’t conflict with any other plugins that might be using the Heartbeat
API.

Each time the heartbeat sends data to the server, we send along the assignment’s post
ID and the current count value.

Heartbeat API | 249

www.it-ebooks.info

http://www.it-ebooks.info/

It’s important that you send something to the server through the
heartbeat. If there is no data to send, the heartbeat won’t bother hit‐
ting the server at all.

Server-side PHP
//processing the message on the server
function sp_heartbeat_received_assignment_count($response, $data)
{
 //check for assignment post id
 if(!empty($data['schoolpress']['assignment_post_id']))
 {
 $assignment = new Assignment(
 $data['schoolpress']['assignment_post_id']
);
 $response['schoolpress']['assignment_count'] = count(
 $assignment->submissions
);
 }

 return $response;
}
add_filter('heartbeat_received',
 'sp_heartbeat_received_assignment_count', 10, 2);

Here we check for the assignment_post_id value passed from the client. If found, we
load up the assignment and return the count of submissions as assignment_count,
which our frontend JavaScript will be looking for.

This code could be updated to detect changes in the assignment count (by comparing
the number sent from the client to the number found server side) and in those cases
pass back a message notifying the teacher to refresh to view the new submissions. Or
we could send some data about the new submissions themselves and push them into
the list on the page.

Finally, if you want to speed up or slow down the heartbeat, you can override the settings
using the following code:

function sp_heartbeat_settings($settings = array())
{
 $settings['interval'] = 20; //20 seconds vs. 15 second default
 return $settings;
}
add_filter('heartbeat_settings', 'sp_heartbeat_settings');

Note that at the time of this writing, the API will only let you use a value between 15
and 60 seconds. Anything faster or slower will be set to 15 or 60 seconds, respectively.
This limitation is actually a good idea for the Heartbeat API, since at any given time,

250 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

multiple plugins and processes may be using that same heartbeat. If you need a certain
poll to occur faster than once every 15 seconds, you should probably set it up as a separate
AJAX call using your own setInterval or setTimeout calls in JavaScript.

You can think of the Heartbeat API as a more casual way of doing polling between the
client and server. If you need something more hardcore (and polling your server every
second is pretty hardcore), then you should roll your own heartbeat-like system.

WordPress Limitations with Asynchronous Processing
Most WordPress applications execute PHP scripts through an Apache or Nginx serv‐
er. When optimized, you can serve a lot of small, simultaneous connections on these
setups, which is perfect for asynchronous JavaScript applications. However, the servers
themselves, and perhaps more importantly, the general overhead of loading WordPress
on server-side calls, means that a WordPress service running on Apache or Nginx will
never be as fast as a smaller JavaScript service running on something like node.js, which
was built specifically to handle asynchronous JavaScript calls.

That said, you can still get a lot done with WordPress and the architecture behind it.
Our suggestion is always to build it the obvious way first and selectively pull out parts
of your application for scaling later when performance becomes an issue.

Does your app have a user base consisting solely of the 30 people inside your company?
Then you are probably going to be fine using WordPress for your realtime JavaScript
coding.

Do you plan to have thousands of users, with dozens of simultaneous connections?
You’ll need some beefy hardware, but you’ll also probably be fine keeping everything
in WordPress.

Do you plan to have millions of users, with tens of thousands of simultaneous connec‐
tions? If so, you need some top-notch engineers, so hopefully you have the money for
them. In any case, you’ll either be pushing WordPress to its limits or using other plat‐
forms to serve your realtime interactions.

These kinds of scaling questions are covered further in Chapter 16.

Backbone.js
When people say that you can’t build apps with WordPress, we point out that WordPress
itself is an application built on the WordPress framework. That WordPress application
is currently about 86% PHP and 14% JavaScript. Some people in the WordPress com‐
munity expect that ratio to get closer to 50/50 over the next few years.

Why the big move to JavaScript? On the frontend side of things, rendering a website
with JavaScript can be much lighter than rendering it with PHP. As you navigate around

WordPress Limitations with Asynchronous Processing | 251

www.it-ebooks.info

http://www.it-ebooks.info/

the typical website, loading all of the HTML DOM is pretty wasteful. The header, footer,
menu, and other pieces of the site may not change at all. With JavaScript, you can simply
load the new part of the website, change the class on the items in your menu, and voila:
new page. This is a much more app-like experience and perfect for using web apps over
mobile networks where bandwidth is more scarce.

Using AJAX to update pages instead of loading new pages is some‐
times referred to as building a single page application, or SPA.

One thing limiting a move to JavaScript is that all of our handy functions and data
structures are native to PHP. As more development is done on the JavaScript side of the
WordPress platform, there is a greater need for some kind of framework to help organize
the JavaScript development.

Backbone.js is a framework for JavaScript consisting of models, views, and collections
of models. This setup is very similar to the MVC frameworks used for server-side PHP
development. In traditional MVC frameworks, the C stands for “controller.” With Back‐
bone.js, the controlling of an app is handled within the views and honestly outside of
the JavaScript framework itself.

Backbone.js has already been used extensively in the Media Library and Theme Cus‐
tomizer updated and added in recent versions of WordPress. The JavaScript developers
working on the WordPress core will likely transition more of the platform code to use
Backbone.js as they build out new features and rework old ones. For this reason, it is
becoming more common to see developers building their themes and apps using Back‐
bone.js as well.

The best practices for Backbone.js development, let alone Backbone+WordPress de‐
velopment, are still being worked out. In general, if you are simply adding some dynamic
AJAX-based UI to an existing PHP-based page, the more traditional AJAX technique
laid out here will be faster and easier to implement and maintain. However, if a fairly
large portion of your app will live inside of JavaScript, a Backbone.js implementation
will help you organize things and will make things easier for you. Backbone.js is not the
kind of tool to use piecemeal. It works best when you go all in with it.

If you are using Backbone.js to render the frontend of your app, the main intersection
point with WordPress will be when your collections and models are saved to the database
through the backend.

Imagine an interface on the SchoolPress site for adding student groups to an assignment.
There may be an input box for naming the group and a button labeled Add Group to

252 | Chapter 9: JavaScript, jQuery, and AJAX

www.it-ebooks.info

http://www.it-ebooks.info/

add the group. Using the traditional AJAX technique outlined in this chapter, the turn
of events would look like this:

1. User enters a new group name.
2. User clicks the Add Group button.
3. The group name is sent to the server via AJAX.
4. The server (WordPress) processes the name, adds the new group, and returns some

data.
5. The client uses JavaScript to parse the response and update the list of groups on the

frontend.

With a Backbone.js app, you mirror the list of groups more thoroughly in the model
and collection you would set up in JavaScript. You could use a similar workflow as the
typical AJAX app, but a more appropriate workflow for a Backbone.js app would be:

1. User enters a new group name.
2. User clicks the Add Group button.
3. The group name is used to create a new instance of the group model and added to

the group collection in Backbone.js.
4. The collection will be coded to update the server (WordPress) through AJAX

whenever the collection changes.
5. A representation of the current collection of groups is sent to the server.
6. WordPress updates the internal representation of the collection in the database to

match what was sent.

So instead of first updating things in the backend and the backend telling the frontend
what to look like, with Backbone.js things are first updated on the frontend, and the
frontend tells the backend how to save the data.

An example of some SchoolPress functionality coded both with the traditional AJAX
technique and then using Backbone.js can be found at http://bwawwp.com/backbonejs-
example/.

Here are some resources to learn more about Backbone.js and how to use it with Word‐
Press:

• Official Backbone.js site
• “Backbone.js and WordPress Resources” by Peter R. Knight

Backbone.js | 253

www.it-ebooks.info

http://backbonejs.org/
http://bit.ly/bb-wp-knight
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

XML-RPC

WordPress is awesome, and you can build a lot of really cool applications just with it,
but what if your application needs to communicate with other applications or other
WordPress installations?

XML-RPC is a remote procedure call (RPC) protocol that uses XML to encode its calls
and HTTP as a transport mechanism. WordPress uses an XML-RPC interface to easily
allow developers to access and post data from other applications, including other Word‐
Press sites.

We’ve compiled a list of some of the available methods of the wp_xmlrpc_server class
along with the arguments that can be used and what values each function returns.

If you would like to follow along with the code examples for some of the following
methods, set up the following function in a custom plugin or in your theme’s func‐
tions.php file. Also, be careful because some of the examples update and delete data:

<?php
add_action('init', 'wds_include_IXR');
function wds_include_IXR() {
 // You need to include this file in order to use the IXR class.
 require_once ABSPATH . 'wp-includes/class-IXR.php';
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 // Another WordPress site you want to push and pull data from
 $xmlrpc_url = 'http://anotherwordpresssite.com/xmlrpc.php';
 $xmlrpc_user = 'admin'; // Hope you're not using "admin" ;)
 $xmlrpc_pass = 'password'; // Really hope you're not using "password" ;)
}
?>

wp.getUsersBlogs
Calls the function wp_getUsersBlogs($args) and requires an array:

255

www.it-ebooks.info

http://www.it-ebooks.info/

• $username—A string of the username used to log in to the given WordPress URL.
• $password—A string of the password used to log in to the given WordPress URL.

This function returns an array:

• isAdmin
• URL
• blogid
• blogName
• xmlrpc—URL of XML-RPC endpoint

<?php
function bwawwp_xmlrpc_getUsersBlogs() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 // returns all blogs in a multisite network
 $rpc->query('wp.getUsersBlogs', $xmlrpc_user, $xmlrpc_pass);
 echo '<h1>Blogs</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getUsersBlogs', 999);
?>

wp.getPosts
Calls the function wp_getPosts($args) and requires an array:

• $blog_id
• $username
• $password
• $filter—An optional array of fields you would like to query posts by. The array can

contain keys for post_type, post_status, number, offset, orderby, and/or order.
• $fields—An optional array of the post fields and their values you would like to

return.

This function returns an array of posts with the post fields you specified in the $fields
parameter:

<?php
function bwawwp_xmlrpc_getPosts() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;

256 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

 $rpc = new IXR_CLIENT($xmlrpc_url);

 // returns all posts of post post_type
 $rpc->query('wp.getPosts', 0, $xmlrpc_user, $xmlrpc_pass);
 echo '<h1>posts</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';

 // returns all posts of page post_type (or any specific post type)
 $filter = array('post_type' => 'page');
 $rpc->query('wp.getPosts', 0, $xmlrpc_user, $xmlrpc_pass, $filter);
 echo '<h1>pages</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';

 // returns 5 published page titles in abc order
 $filter = array(
 'post_type' => 'page',
 'status' => 'publish',
 'number' => '5',
 'orderby' => 'title',
 'order' => 'ASC'
);
 $fields = array('post_title');
 $rpc->query('wp.getPosts', 0, $xmlrpc_user, $xmlrpc_pass, $filter, $fields);
 echo '<h1>5 published page titles</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';

 exit();
}
add_action('init', 'bwawwp_xmlrpc_getPosts', 999);
?>

wp.getPost
Calls the function wp_getPost($args) and requires an array:

• $blog_id
• $username
• $password
• $post_id—A required integer of the post ID of the post you want to get.
• $fields—An optional array of the post fields and values you would like to return.

wp.getPost | 257

www.it-ebooks.info

http://www.it-ebooks.info/

This function returns an array of fields based on the $fields parameter. You can use
any of the following fields:

• post_id
• post_title
• post_date
• post_date_gmt
• post_modified
• post_modified_gmt
• post_status
• post_type
• post_name
• post_author
• post_password
• post_excerpt
• post_content
• link
• comment_status
• ping_status
• sticky
• custom_fields
• terms
• categories
• tags
• enclosure

<?php
function bwawwp_xmlrpc_getPost() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $method = 'wp.getPost';
 // return last post to get a post ID
 $filter = array('number' => '1', 'orderby' => 'date', 'order' => 'DESC');
 $fields = array('post_id');
 $rpc->query('wp.getPosts', 0, $xmlrpc_user, $xmlrpc_pass, $filter,
 $fields);
 $response = $rpc->getResponse();
 $post_id = $response[0]['post_id'];

258 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

 // return all data on last $post_id
 $rpc->query('wp.getPost', 0, $xmlrpc_user, $xmlrpc_pass, $post_id);
 echo '<h1>Post ID: '.$post_id.'</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getPost', 999);
?>

wp.newPost
Calls the function wp_newPost($args) and requires an array:

• $blog_id—An integer of the blog ID to add the post to.
• $username
• $password
• $content—An array of post data for creating a new post. This array can contain any

of the fields the function wp_insert_post() supports.

This function returns a string of the post_id:

<?php
function bwawwp_xmlrpc_newPost() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 // create an array with post data
 $content = array(
 'post_title' => 'New Post with XML-RPC'
);
 $rpc->query('wp.newPost', 0, $xmlrpc_user, $xmlrpc_pass, $content);
 $post_id = $rpc->getResponse();
 echo '<h1>New Post ID: '. $post_id .'</h1>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_newPost', 999);
?>

wp.editPost
Calls the function wp_editPost($args) and requires an array:

• $blog_id
• $username
• $password

wp.newPost | 259

www.it-ebooks.info

http://www.it-ebooks.info/

• $post_id —A required integer of the post ID you want to update.
• $content—An array of post data for updating an existing post. Only fields in the

array will be updated.

This function returns true on success:

<?php
function bwawwp_xmlrpc_editPost() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 // return last post to get a post ID
 $filter = array('number' => '1', 'orderby' => 'date', 'order' => 'DESC');
 $fields = array('post_id');
 $rpc->query('wp.getPosts', 0, $xmlrpc_user, $xmlrpc_pass, $filter, $fields);
 $response = $rpc->getResponse();
 $post_id = $response[0]['post_id'];
 // create an array with new post data
 $content = array(
 'post_title' => 'Updated Post with XML-RPC',
 'post_status' => 'publish'
);
 $rpc->query('wp.editPost', 0, $xmlrpc_user, $xmlrpc_pass, $post_id,
 $content);
 echo '<h1>Updated Post ID: '. $post_id .'</h1>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_editPost', 999);
?>

wp.deletePost
Calls the function wp_deletePost($args) and requires an array:

• $blog_id
• $username
• $password
• $post_id

This function returns true on success:

<?php
function bwawwp_xmlrpc_deletePost() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 // return last post to get a post ID
 $filter = array('number' => '1', 'orderby' => 'date', 'order' => 'DESC');
 $fields = array('post_id');
 $rpc->query('wp.getPosts', 0, $xmlrpc_user, $xmlrpc_pass, $filter, $fields);

260 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

 $response = $rpc->getResponse();
 $post_id = $response[0]['post_id'];
 // delete post by $post_id
 $rpc->query('wp.deletePost', 0, $xmlrpc_user, $xmlrpc_pass, $post_id);
 echo '<h1>Deleted Post ID: '. $post_id .'</h1>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_deletePost', 999);
?>

wp.getTerms
Calls the function wp_getTerms($args) and requires an array:

• $blog_id
• $username
• $password
• $taxonomy—A required string of the taxonomy of the terms you want to retrieve.
• $filter—An optional array of parameters used to alter the query used to retrieve the

terms. The array can contain number, offset, orderby, order, hide_empty, and/or
search.

This function returns an array of terms and their fields:

<?php
function bwawwp_xmlrpc_getTerms() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $rpc->query('wp.getTerms', 0, $xmlrpc_user, $xmlrpc_pass, 'category');
 echo '<h1>Category Terms</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getTerms', 999);
?>

wp.getTerm
Calls the function wp_getTerm($args) and requires an array:

• $blog_id
• $username
• $password

wp.getTerms | 261

www.it-ebooks.info

http://www.it-ebooks.info/

• $taxonomy_name—A required string of the taxonomy of the term you want to
retrieve.

• $term_id—A required string of the term ID of the term you want to retrieve.

This function returns an array of term fields:

• term_id

• name

• slug

• term_group

• term_taxonomy_id

• taxonomy

• description

• parent

• count

<?php
function bwawwp_xmlrpc_getTerm() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $rpc->query('wp.getTerm', 0, $xmlrpc_user, $xmlrpc_pass, 'category', 1);
 echo '<h1>Term ID 1</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getTerm', 999);
?>

wp.newTerm
Calls the function wp_newTerm($args) and requires an array:

• $blog_id
• $username
• $password
• $content—An array of term data for adding a new term. The array can contain keys

for name, taxonomy, parent, description, and slug.

This function returns a string of the term_id.

262 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

wp.editTerm
Calls the function wp_editTerm($args) and requires an array:

• $blog_id
• $username
• $password
• $term_id—A required string of the term ID of the term you want to update.
• $content—An array of term data you would like to update. The array can contain

keys for name, taxonomy, parent, description, and slug.

This function returns a string of the term_id.

wp.deleteTerm
Calls the function wp_deleteTerm($args) and requires an array:

• $blog_id
• $username
• $password
• $taxonomy_name—A required string of the taxonomy of the term you want to

delete.
• $term_id—A required string of the term ID of the term you want to delete.

This function returns true on success and an error message if it fails.

wp.getTaxonomies
Calls the function wp_getTaxonomies($args) and requires an array:

• $blog_id
• $username
• $password

This function returns an array of taxonomies and their settings:

<?php
function bwawwp_xmlrpc_getTaxonomies() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $rpc->query('wp.getTaxonomies', 0, $xmlrpc_user, $xmlrpc_pass);
 echo '<h1>Taxonomies</h1>';

wp.editTerm | 263

www.it-ebooks.info

http://www.it-ebooks.info/

 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getTaxonomies', 999);
?>

wp.getTaxonomy
Calls the function wp_getTaxonomy($args) and requires an array:

• $blog_id
• $username
• $password
• $taxonomy—A required string of the taxonomy you want to retrieve.

This function returns an array of taxonomy settings.

wp.getUsers
Calls the function wp_getUsers($args) and requires an array:

• $blog_id
• $username
• $password
• $filter—An optional array of fields you would like to query users by. The array can

contain keys for number (default: 50), offset (default: 0), role, who, orderby, and/
or order.

• $fields—An optional array of the user fields and values you would like to return.
You can use any of the following fields:
— user_id
— username
— first_name
— last_name
— registered
— bio
— email
— nickname

264 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

— nicename
— url
— display_name
— roles

This function returns an array of users with the user fields you specified in the $fields
parameter:

<?php
function bwawwp_xmlrpc_getUsers() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $rpc->query('wp.getUsers', 0, $xmlrpc_user, $xmlrpc_pass);
 echo '<h1>Users</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 $filter = array('role' => 'administrator');
 $fields = array('username', 'email');
 $rpc->query('wp.getUsers', 0, $xmlrpc_user, $xmlrpc_pass, $filter, $fields);
 echo '<h1>Filtered Users</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getUsers', 999);
?>

wp.getUser
Calls the function wp_getUser($args) and requires an array:

• $blog_id
• $username
• $password
• $user_id—A required integer of a user ID of the user you would like to retrieve.
• $fields—An optional array of user fields you would like to return. You can use the

same fields as in the wp_getUsers() function.

This function returns an array of fields based on the $fields parameter.

wp.getProfile
Calls the function wp_getProfile($args) and requires an array:

wp.getUser | 265

www.it-ebooks.info

http://www.it-ebooks.info/

• $blog_id
• $username
• $password
• $fields—An optional array of user fields you would like to return.

This function returns an array of user fields for the logged-in user from the $fields
parameter. You can use the same fields as in the wp_getUser() function.

wp.editProfile
Calls the function wp_editProfile($args) and requires an array:

• $blog_id
• $username
• $password
• $content—An array of user data for updating the current user. The array can contain

keys for first_name, last_name, website, display_name, nickname, nicename, and
bio.

This function returns true on success.

wp.getCommentCount
Calls the function wp_getCommentCount($args) and requires an array:

• $blog_id
• $username
• $password
• $post_id

This function returns an array of the following comment counts:

• approved
• awaiting_moderation
• spam
• total_comments

266 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

wp.getPageTemplates
Calls the function wp_getPageTemplates($args) and requires an array:

• $blog_id
• $username
• $password

This function returns an array of page templates.

wp.getOptions
Calls the function wp_getOptions($args) and requires an array:

• $blog_id
• $username
• $password
• $options—An optional array of options to return values for. If no options are passed

in, then all options will be returned.

This function returns an array of options:

<?php
function bwawwp_xmlrpc_getOptions() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $rpc->query('wp.getOptions', 0, $xmlrpc_user, $xmlrpc_pass);
 echo '<h1>All Options</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 $options = array('blog_url', 'template');
 $rpc->query('wp.getOptions', 0, $xmlrpc_user, $xmlrpc_pass, $options);
 echo '<h1>Filter 2 Options</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getOptions', 999);
?>

wp.setOptions
Calls the function wp_setOptions($args) and requires an array:

wp.getPageTemplates | 267

www.it-ebooks.info

http://www.it-ebooks.info/

• $blog_id
• $username
• $password
• $options—A required key and value array of options to update.

This function returns an array of updated options:

<?php
function bwawwp_xmlrpc_setOptions() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $options = array(
 'blog_title' => 'Site Title via XML-RPC',
 'blog_tagline' => 'Just another WordPress site via XML-RPC'
);
 $rpc->query('wp.setOptions', 0, $xmlrpc_user, $xmlrpc_pass, $options);
 echo '<h1>Set Options</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_setOptions', 999);
?>

wp.getComment
Calls the function wp_getComment($args) and requires an array:

• $blog_id
• $username
• $password
• $comment_id—A required integer of the comment ID of the comment you would

like to retrieve.

This function returns an array of comment data:

• date_created_gmt
• user_id
• comment_id
• parent
• status
• content

268 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

• link
• post_id
• post_title
• author
• author_url
• author_email
• author_ip
• type

wp.getComments
Calls the function wp_getComments($args) and requires an array:

• $blog_id
• $username
• $password
• $filter—An optional array of filterable comment values. The array can contain keys

for status, post_id, offset, and/or number (default: 10).

This function returns an array of comments with the same individual comment data
that gets returned with the wp_getComment() function:

<?php
function bwawwp_xmlrpc_getComments() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $filter = array('status' => 'approve', 'number' => '20');
 $rpc->query('wp.getComments', 0, $xmlrpc_user, $xmlrpc_pass, $filter);
 echo '<h1>Approved Comments</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getComments', 999);
?>

wp.deleteComment
Calls the function wp_deleteComment($args) and requires an array:

• $blog_id

wp.getComments | 269

www.it-ebooks.info

http://www.it-ebooks.info/

• $username
• $password
• $comment_id—A required integer of the comment ID of the comment you would

like to delete.

This function returns true on success.

wp.editComment
Calls the function wp_editComment($args) and requires an array:

• $blog_id
• $username
• $password
• $comment_id—A required integer of the comment ID of the comment you would

like to update.
• $content—A required array of comment keys and values. The array can contain

keys for author, author_url, author_email, content, date_created_gmt, and/or
status.

This function returns true on success.

wp.newComment
Calls the function wp_newComment($args) and requires an array:

• $blog_id
• $username
• $password
• $post_id—A required integer of the post ID of the post to which you would like to

add a new comment.
• $content—A required array of comment keys and values. The array can contain

keys for author, author_url, author_email, content, date_created_gmt, and/or
status.

This function returns the new comment ID.

270 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

wp.getMediaLibrary
Calls the function wp_getMediaLibrary($args) and requires an array:

• $blog_id
• $username
• $password
• $filter—An optional array of filterable attachment values. The array can contain

keys for parent_id, mime_type, offset, and/or number.

This function returns an array of attachments with the same individual attachment data
that gets returned with the getMediaItem() function:

<?php
function bwawwp_xmlrpc_getMediaLibrary() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 $filter = array('number' => '20');
 $rpc->query('wp.getMediaLibrary', 0, $xmlrpc_user, $xmlrpc_pass, $filter);
 echo '<h1>Media Library</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getMediaLibrary', 999);
?>

wp.getMediaItem
Calls the function wp_getMediaItem($args) and requires an array:

• $blog_id
• $username
• $password
• $attachment_id—A required integer of the attachment ID of the attachment you

would like to retrieve.

This function returns an array of attachment data:

• date_created_gmt
• parent
• link

wp.getMediaLibrary | 271

www.it-ebooks.info

http://www.it-ebooks.info/

• thumbnail
• title
• caption
• description
• metadata

wp.uploadFile
Calls mw_newMediaObject($args) and requires an array:

• $blog_id
• $username
• $password
• $data—A required array of file data of the file you are uploading. The array must

contain keys for name, type, and bits. The array can contain post_id if you want
to attach to an uploaded file to a post and overwrite if you want to overwrite an
existing file with the same name.

This function returns an array of file data:

<?php
function bwawwp_xmlrpc_uploadFile() {
 global $xmlrpc_url, $xmlrpc_user, $xmlrpc_pass;
 $rpc = new IXR_CLIENT($xmlrpc_url);
 // grab an image
 $args = array(
 'post_type' => 'attachment',
 'post_status' => 'any',
 'posts_per_page' => 1,
 'post_mime_type' => 'image/jpeg'
);
 $posts = get_posts($args);
 $name = basename($posts[0]->post_title);
 $type = $posts[0]->post_mime_type;
 $bits = file_get_contents($posts[0]->guid);
 $data = array(
 'name' => $name,
 'type' => $type,
 'bits' => new IXR_Base64($bits),
 'overwrite' => true
);
 $rpc->query('wp.uploadFile', 0, $xmlrpc_user, $xmlrpc_pass, $data);
 echo '<h1>Uploaded File</h1>';
 echo '<pre>';
 print_r($rpc->getResponse());

272 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_uploadFile', 999);
?>

wp.getPostFormats
Calls the function wp_getPostFormats($args) and requires an array:

• $blog_id
• $username
• $password

This function returns an array of post formats used by the site.

wp.getPostType
Calls the function wp_getPostType($args) and requires an array:

• $blog_id
• $username
• $password
• $post_type—A required string of the post type you would like to retrieve data for.
• $fields—An optional array of post type fields you would like to return. The array

can contain keys for labels, description, capability_type, cap, map_meta_cap,
hierarchical, menu_position, taxonomies, and/or supports.

This function returns an array of the post type fields you specified with the $fields
parameter.

wp.getPostTypes
Calls the function wp_getPostTypes($args) and requires an array:

• $blog_id
• $username
• $password
• $filter—An optional array of filterable post type field values. The array can contain

keys for any post type fields; see the function get_post_types(). The default is
public → true.

wp.getPostFormats | 273

www.it-ebooks.info

http://www.it-ebooks.info/

• $fields—An optional array of post type fields you would like to return. The array
can contain keys for labels, description, capability_type, cap, map_meta_cap,
hierarchical, menu_position, taxonomies, and/or supports.

This function returns an array of the post types with the fields you specified with the
$fields parameter:

<?php
function bwawwp_xmlrpc_getPostTypes() {
 $rpc = new IXR_CLIENT('http://messenlehner.com/xmlrpc.php');
 $filter = array('public' => 1);
 $rpc->query('wp.getPostTypes', 0, $username, $password, $filter);
 $response = $rpc->getResponse();
 echo '<h1>Post Types</h1>';
 echo '<pre>';
 print_r($response);
 echo '</pre>';
 exit();
}
add_action('init', 'bwawwp_xmlrpc_getPostTypes', 999);
?>

The wp_xmlrpc_server class is located in /wp-includes/class-wp-xmlrpc-server.php. If
you take a look at the class, you can see all of the available functions for interacting with
WordPress data.

274 | Chapter 10: XML-RPC

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Mobile Apps with WordPress

Native mobile applications with WordPress like iOS and Android applications? Well,
sure, why not? We are going to explore building a very simple mobile application for
both iOS and Android devices. We will leverage what we are already doing in WordPress
to offer the most functionality in the least amount of time. How is this possible? With
a native app wrapper.

App Wrapper
An app wrapper is basically a native mobile application with a webview. This means that
the native app is really just a web browser embedded within the app itself. The URL of
this embedded browser points to your WordPress application, hopefully using a re‐
sponsive mobile design so it looks like it belongs on the device. You can always extend
your hybrid app with more native functionality like accessing the camera, GPS device,
contacts, and more. If you want a downloadable app in various mobile app marketplaces
and don’t have the time, money, or resources to build full-blown native apps, building
a hybrid app may be the way to go. You will only have to build your web app once, and
you can offer that same functionality in each mobile app. A hybrid mobile application
like this is probably the fastest and most cost-effective way to get your app out there in
the marketplace.

iOS Applications
To build a very basic iOS application and to deploy it in iTunes, you will need the
following:

1. An Apple Computer running OS X 10.8.4 or later.

275

www.it-ebooks.info

http://www.it-ebooks.info/

2. Xcode, Apple’s development environment for creating apps for Mac, iPhone, and
iPad. Xcode is packed with an analysis tool, an iOS Simulator, and the latest SDKs
for iOS.

3. Enrollment in the Apple Developer Program. You will need to do this if you want
to distribute your apps in the App Store. It costs $99 per year for an active account,
and once your account is activated, you can put as many apps in the App Store as
you want.

Enrolling as an Apple Developer
You will want to start this process as soon as possible because it can take a while to get
approved.

You will need to decide if you are going to enroll as an individual or a company/orga‐
nization. If you register your company, the process will take a little bit longer because
you will need to supply your company’s D-U-N-S number. A D-U-N-S number is a
unique identifying number for a company provided by Dun & Bradstreet.

Enrolling is a six-step process:

1. Enter account info—After choosing to enroll as an individual or a company, you
will need to log in with your Apple ID. If you don’t have an Apple ID, you will need
to create one. Once logged in, you will need to read the Review Agreement and
check off that you have read it and agree to its terms. You will then need to fill out
a form with some basic information like what you will be developing and what other
platforms you develop on. If you are enrolling your company or on behalf of a
company, you will need to agree that you legally authorized to bind your company
to Apple Developer Program legal agreements. Next you will need to submit basic
information about you or about your company. When enrolling your company, you
will need to enter your company’s D-U-N-S number. If you don’t have one, you will
need to apply for one on the provided form. Getting a new D-U-N-S number is a
separate process and can take several days.

2. Select program—You can also enroll in the Mac Developer Program, but make sure
you enroll in the iOS Developer Program.

3. Review and submit—Once you have provided the required information, you can
review and submit your enrollment application. Now the waiting begins, especially
if you have to wait to get your D-U-N-S number from D&B. Apple will review your
enrollment application and try to contact you to verify you are who you say you
are.

4. Agree to license—Once Apple is able to verify your account, you will then have
access to read and agree to its Licence Agreement. Make sure you read the entire
thing because it is important to understand the Licence.

276 | Chapter 11: Mobile Apps with WordPress

www.it-ebooks.info

http://bit.ly/apple-xcode
http://bit.ly/a-developer
http://dnb.com
http://www.it-ebooks.info/

5. Purchase program—Get out your credit card. The time has come (finally) to where
you can actually pay Apple for your iOS Developer Program Enrollment. Go ahead
and do that. Once you pay, you will get an email receipt.

6. Activate program—In about a day after you make the program purchase, you will
receive another email with an activation email in it. You are almost done; just click
on the link to activate the program, and you are in. Welcome to the club!

Building Your App with Xcode
Go ahead and fire up Xcode and click on “Create a new Xcode project.” You should be
taken to a screen where you can choose a template to use. There are many templates
you can start a native iOS app with; but in the basic example, we are going to choose
the Single View Application. This template provides a starting point for an application
that uses a single view. It provides a view controller to manage the view and a storyboard
or nib file that contains the view.

Next you will see a screen where you can enter in basic project information. Fill out the
fields and click next. You will then be prompted to save your new project to a location
on your hard drive. Once your new project is created, Xcode will open it for you, and
you can begin poking around.

Storyboard
By default, all the way on the left of Xcode are the files that make up your new
project. You should notice two files called Main_iPhone.storyboard and
Main_iPad.storyboard. Storyboards allow an iOS developer to visually create an appli‐
cation. If you click on Main_iPhone.storyboard, you should see a blank outline of an
iPhone popup. This is basically an empty canvas that you can drag any objects onto.
Notice the Object Library on the bottom right. Scroll through all of the objects to get
an idea of what is available. When you see the Web View object, drag and drop it onto
the iPhone outline. The UIWebview class displays embedded web content. You can set
it to the URL of your responsive WordPress web application by adding Objective-C
code to the ViewController.h and ViewController.m files, aka the UIViewController
class.

View controller
The UIWebView Class is made up of two files, ViewController.h and View‐
Controller.m. The ViewController.h file is the view controller’s header file. Your View‐
Controller.h file should look something like the following code example:

//
// XYZViewController.h
// SchoolPress
//

iOS Applications | 277

www.it-ebooks.info

http://www.it-ebooks.info/

// Created by Brian Messenlehner on 6/16/13.
// Copyright (c) 2013 Building Web Apps with WordPress. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface XYZViewController : UIViewController
@property (weak, nonatomic) IBOutlet UIWebView *webView;

@end

Notice that the only real difference in the code you started with and the preceding code
is that we added the line:

@property (weak, nonatomic) IBOutlet UIWebView *webView;

which is basically defining the webView variable.

Now open up the ViewController.m file, and add these lines of code:

NSString *fullURL = @"http://bwawwp.com";

NSURL *url = [NSURL URLWithString:fullURL];

NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];

[_webView loadRequest:requestObj];

under the line of code:

[super viewDidLoad];

Your ViewController.m file should end up looking similar to the following code:

//
// XYZViewController.m
// SchoolPress
//
// Created by Brian Messenlehner on 6/16/13.
// Copyright (c) 2013 Building Web Apps with WordPress. All rights reserved.
//

#import "XYZViewController.h"

@interface XYZViewController ()

@end

@implementation XYZViewController

- (void)viewDidLoad
{
 [super viewDidLoad];
 // the following URL can be any URL you would like to point your webview to.
 NSString *fullURL = @"http://webdevstudios.com";

278 | Chapter 11: Mobile Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

 NSURL *url = [NSURL URLWithString:fullURL];
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];
 [_webView loadRequest:requestObj];
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

@end

Basically, the code we added is telling the webView to open the URL we specified. Now
you will need to make a connection between your webView variable and the actual
UIWebView on your storyboard (the screenshot shown in Figure 11-1).

Figure 11-1. View controller outlet

To do this, click your storyboard file Main_iPhone.storyboard, expand View Controller
Scene, and Control-click on View Controller. Under Outlets, you should see webView;
and to the right, you should see an empty circle. Click on that circle and drag and drop
it on top of the UIWebView in the iPhone outline. Repeat this process for the iPad
storyboard if you plan on making an iPad version of your app.

iOS Applications | 279

www.it-ebooks.info

http://www.it-ebooks.info/

That should be it! Your first very basic iOS app WordPress hybrid is done and ready to
be tested.

Check out the UIWebView Class Reference for more on the UIWeb‐
View class.

iOS simulator
Xcode comes packaged with an iOS simulator for both iPhones and iPads. You can test
your iOS applications on this simulator at any time by clicking on the big play button
at the top left of your Xcode screen. You can also toggle which iOS device you would
like to run your app on. You can also test, run, and build your application builds from
the Product menu. Go ahead and click Product → Run to fire up the simulator and run
your new application. Figure 11-2 is a screenshot of the iPhone simulator displaying an
app with a webView that is pointed to WebDevStudios.com.

App Distribution
So now that your app works runs in the iOS simulator, it’s time to add it to the market‐
place. There are a few things you will need to do before you actually upload your app.
Log in to https://developer.apple.com/account/ios/ with your Apple ID. There are a few
steps you need to take to make your application available for download on iTunes:

1. Create a production certificate.
2. Create a provisioning profile for distribution.
3. Enable code signing in Xcode.
4. Create a ZIP file of your app and upload it to iTunes.

I recommend watching Dani Arnaout’s “How to upload an app to app store” video.

iOS Resources
• “Deploying iPhone Apps to Real Devices” on mobiForge

280 | Chapter 11: Mobile Apps with WordPress

www.it-ebooks.info

http://bit.ly/uiwebview
http://bit.ly/appstorevid
http://bit.ly/apps-to-real
http://www.it-ebooks.info/

Figure 11-2. Device simulator

Android Applications
If you made a basic iOS app, deployed it, and thought to yourself, holy crap that was a
lot of work, you will think deploying an Android app is a lot simpler.

To make a basic app, you will need:

1. Any computer that can run Eclipse
2. The Android SDK

You can download the ADT (Android Developer Tools) bundle. It comes with Eclipse
and the ADT plugin, Android SDK Tools, Android Platform-tools, the latest Android
platform, and the latest Android system image for the emulator. You can also choose to
install Eclipse separately, then install the ADT Plugin and SDK Tools.

Android Applications | 281

www.it-ebooks.info

http://eclipse.org
http://bit.ly/sdkandroid
http://www.it-ebooks.info/

If you’ve installed the ADT Bundle, open up Eclipse, and you should have all of the
Android tools already set up:

1. Go to File → New → Project and select Android Application Project. Then click
Next.

2. Enter an Application Name, a Project Name, and a Package Name. Then choose
your Minimum Required SDK, Target SDK, what API version you want to compile
with, and the default theme. Click Next.

3. Choose a Workspace or the location of your project and click Next.
4. Select any of the default launcher icons (the icon people we will see for the app) and

click Next.
5. Leave Create Activity checked and select Blank Activity. Then click Next.
6. Leave the defaults for Activity Name, Layout Name, and Navigation Type. Then

click Finish.

That’s it. You’ve got a basic Android app; it really doesn’t do anything yet, but at least
it’s a start.

AndroidManifest.xml
This file is required for any Android application. It contains information about how
your application is set up, what actions to take, what permissions it requires, what API
version to use, and more. Think of this file as your WordPress wp-config.php file, since
it is like a basic configuration file for your Android application. For more information
on AndroidManifest.xml, check out Apple’s Android guide.

You will need to add the following line of code to the AndroidManifest.xml file to tell
your application that it will require permission to access the Internet:

<uses-permission android:name="android.permission.INTERNET" />

Your AndroidManifest.xml file should look something like the following code:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.oreilly.bwawwp"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="18" />

 <application

282 | Chapter 11: Mobile Apps with WordPress

www.it-ebooks.info

http://bit.ly/android-manifest
http://www.it-ebooks.info/

 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.oreilly.bwawwp.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

activity_main.xml
This file can have other names, and you can have multiple activity XML files, but this
file basically stores the information about your main app screen. Your activity XML files
are usually located in /res/layout of your application project directory. If you used the
default when creating your app, open up activity_main.xml and alter the code to look
like this:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >

 <WebView
 android:id="@+id/webView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_centerHorizontal="true" />

</RelativeLayout>

MainActivity.java
This file is the Java-based code behind for your main activity XML file. Your XML file
is for the layout of your app screen, and this Java file is what makes it functional. In the
last code example, you may have noticed the tools:context parameter set to .MainAc
tivity in the RelativeLayout node of the XML. This directly references the public
class in this Java file. Your Java files are going to be located in the src directory:

package com.oreilly.bwawwp;

// make these classes available
import android.os.Bundle;

Android Applications | 283

www.it-ebooks.info

http://www.it-ebooks.info/

import android.app.Activity;
import android.view.Window;
import android.view.WindowManager;
import android.webkit.WebView;
import android.webkit.WebViewClient;
// extend Activity class
public class MainActivity extends Activity {

 private WebView webView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // make app full screen on device
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(
WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN
);

 setContentView(R.layout.activity_main);

 // set webView to the webView on activity_main.xml
 // by its id
 webView = (WebView) findViewById(R.id.webView);
 // enable javascript which is essential for slick
 //WP responsive designs
webView.getSettings().setJavaScriptEnabled(true);
 // load any web url you like
webView.loadUrl("http://bwawwp.com");
 // this makes sure that when links are clicked the user
 // stays in the app
 webView.setWebViewClient(new WebViewClient());

}

}

Creating an APK file
An .apk file is a compiled Android Application. You should be able to run an .apk file
on any Android device.

Every time you run the Android emulator, you actually create an .apk file; but if you
want to eventually list your Android App in the Google Play store, you will need to
follow these extra steps in Eclipse:

• Go to File → Export.
• Click Export Android Application and then the Next button.

284 | Chapter 11: Mobile Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

• Choose the project you want to export and click the Next button.
• Check Create new keystore, choose a name and location, then enter a password and

click the Next button.
• Fill out all of the Key Creation fields. Alias is the name people will see. For validity,

put 25. When finished, click the Next button.
• Choose a name and destination for the actual .apk file that will be generated and

click the Finished button.

You can manually copy the exported .apk file to any Android device and start using it!

Getting Your App on Google Play
If you are going through the trouble of creating a basic Android app, you probably want
to put it up in Google’s app store so people can download it. This process is easier and
cheaper then getting an iOS app up on iTunes. You need to create an account online.

Android Resources
Here are some helpful links:

• The ADT Plugin page
• The Getting Started with Android Studio page

Extend Your App
Now that your app is out in the wild, try to spend some time making it better. Maybe
add some cool native functionality. If you are not an iOS or Android developer, you
could certainly learn the basics by picking up an O’Reilly iOS and/or Android book.

Once you know the basics of building simple native apps, you can pull in specific data
from your WordPress app. The most simple method of pulling WordPress data into
your app is pulling in a RSS feed. You can also push and pull data via XML-RPC, as we
went over in the last chapter. XML-RPC can be used to interact with any WordPress
website or web application. You can manage pretty much any data stored in a WordPress
MySQL database remotely using XML-RPC.

Wait, what? Both the WordPress iOS and Android apps are open source. Dig through
the code in these apps and see how they are built and try to reuse what you can in your
own app. If you’re feeling up to it and already know how to build iOS and/or Android
apps, try to contribute to these projects and make them better.

Extend Your App | 285

www.it-ebooks.info

https://play.google.com/apps/publish/signup/
http://bit.ly/adt-plugin
http://bit.ly/gs-studio
http://bit.ly/wp-ios-github
http://bit.ly/wp-android-github
http://www.it-ebooks.info/

AppPresser
Want to easily build a hybrid mobile app for you or your client and don’t want to write
the code for it yourself? Check out AppPresser; you can download a WordPress plugin
that will allow you to build an iOS and/or Android app based off your own responsive
mobile theme or a selected AppPresser theme. AppPresser is more than just a mobile
theme; it can integrate with device hardware like the camera, geolocation, and more.
AppPresser-created apps can be uploaded to iTunes and Google Play so you and your
clients can have a real presence in the mobile app marketplace without touching a line
of Objective-C or Java.

Mobile App Use Cases
OK, so we have mobile apps that can display content from my web app; how interactive
can it really be? Hybrid WordPress mobile apps can be as interactive as you want them
to be! Anything you can do with WordPress you can do in your hybrid mobile app.

You can force your app users to log into your app via Facebook, Twitter, or other social
networks that allow single sign on.

Maybe your web app is an online store: your mobile app can give your customers the
ability to browse and purchase products right from the app. Maybe your app allows
multiple merchants to have their own stores on your network: your app can give them
the ability to manage their inventory and upload photos of products in real time directly
from their device.

Maybe you built a dating website with BuddyPress: making a branded mobile app for
your dating service could really help boost your member base if you gain popularity in
the marketplaces. You could utilize native device features like the camera to allow your
social network members to take and upload selfies directly to their profile.

Maybe you are building a realtor site, and you want agents to be able to create new posts
in a custom post type called “Homes” for a home they are trying to sell. You can give
them the ability to snap some photos of the house and post them to the web application
along with the longitude and latitude of the house so it will show up in Google Maps.

You could make a mobile app for construction contractors, plumbers, landscapers,
electricians, or any other type of physical service–based business that could easily assist
them in tracking jobs, accessing client details, uploading before-and-after photos or
videos, tracking job locations via GPS, collaborating with coworkers, and more.

The possibilities of what you can build are limitless, especially the more you incorporate
native functionality into your hybrid mobile application. If required, you could always
build 100% native mobile apps and still make them access an online WordPress appli‐
cation so your content and user base is the same across all platforms.

286 | Chapter 11: Mobile Apps with WordPress

www.it-ebooks.info

http://apppresser.com
http://www.it-ebooks.info/

CHAPTER 12

PHP Libraries, External APIs,
and Web Services

Most programming languages, including PHP, have modularized collections of code,
classes, and functions. These collections are usually referred to as a code library or
extension. Don’t recreate the wheel. There are PHP libraries that exist to perform very
specific functionality that can be easily used to extend the applications you are building.

Most of WordPress is written in PHP, which means as a WordPress developer, you can
utilize any PHP libraries available to you or even build your own! Check out the PHP.net
Function Reference for an organized list of some PHP libraries.

An application programmable interface, or API, can be part of an application in which
you have access to the source code, like the various WordPress APIs covered in this
book. But an API can also enable you to use an application or service in which you don’t
have direct access to the source code. Many web-based applications and services offer
some kind of API for accessing or manipulating their data from your application.

The WordPress plugin repository has more than a few plugins that interact with various
web services, so any time you are looking for custom WordPress functionality, you might
want to start at the WordPress plugin repository. Of course, if you don’t find exactly
what you are looking for in a plugin, you may need to write your own custom plugin
or piggyback off of an existing one.

We mentioned GitHub more than a few times, but it is a great place to find functionality
you may be looking for. Another good resource for code can be other PHP-based open
source projects like Drupal or Joomla. If the functionality you are looking for doesn’t
exist as a WordPress plugin but does as a Drupal module, take the code and make it
work with WordPress.

Depending on what your requirements are, you can interact with various libraries and
APIs in many different ways. You can cache data from an API in a transient. You can

287

www.it-ebooks.info

http://bit.ly/phpfunct-ref
http://bit.ly/phpfunct-ref
http://www.it-ebooks.info/

create posts and post metadata. You can create users and user meta. You can sideload
post attachments. You can push post data to a web service. These are just a few examples;
the sky’s the limit!

We are going to walk through some popular libraries and APIs that can be easily inte‐
grated into WordPress and talk about some use cases.

Imagick
Imagick is a powerful piece of software that allows you to resize and manipulate image
files. It’s like Photoshop for the command line, which can be useful for building mindless
meme generators amongst other more productive things.

Imagick can be installed on your server and then run through the command line via
the shell_exec() or exec() PHP functions or you can use the Imagick PHP library as
a wrapper for the underlying software. The Imagick library is not bundled with PHP
and must be installed separately along with the Imagick software itself.

Imagick can be very useful if you require all of the images on your web application to
be watermarked with your URL so if anybody hijacks your images at least they will have
your web address embedded onto it. Justin Sternberg of WebDevStudios made some
really easy-to-use methods for overlaying any text on any image and then saving the
separate image as an attachment against a WordPress post. Check his code out at
WordPress-Image-Watermark.

MaxMind GeoIP
MaxMind GeoIP gets data from a users’ IP address such as their location and Internet
provider. There are many services out there like MaxMind, but we like to use this service
because it has a very extensive API and a free downloadable database.

Maybe a school wants to add an extra layer of security for its web application and only
wants to give access to the login page to people from within the same town or state that
the school is in. This type of security feature might only be necessary if you want to lock
down your application to a particular geographical location or locations, but it could
greatly reduce the amount of potential hack attempts. Instead of only allowing access
to your web application, you could also lock out particular locations, let’s say China.
Maybe depending on your application, you know that anyone visiting from China
should not have access.

Maybe a state website using WordPress wants to be able to show its visitors schools in
the area when the website first loads. Let’s say “schools” are a CPT with address infor‐
mation stored as post meta. This can also be achieved by getting the end users’ locations
and doing a meta query to match schools in their area.

288 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://www.quickmeme.com/caption
http://www.quickmeme.com/caption
http://bit.ly/imagick-php
http://bit.ly/image-waterm
http://bit.ly/geo-ip
http://www.it-ebooks.info/

You can download the PHP library with all of the functionality from the MaxMind
website. To utilize its API, download the code from GitHub.

In Example 12-1, we are assuming that you have signed up for MaxMind’s Omni Service.
The Omni service is MaxMind’s most robust service and will return the most data for
a supplied IP address.

Example 12-1. MaxMind GeoIP
<?php
add_action('init', 'schoolpress_maxmind');
function schoolpress_maxmind(){

 // Omni service code is 'e'
 $service = 'e';
 // MaxMind Licence Key
 $key = 'sELZl0ELZMrx97T'; // This is a fake key, get your own!

 // Build an array of the licence key and the ip address of the end user
 $params = getopt('l:i:');
 if (!isset($params['l'])) $params['l'] = $key;
 $ip = $_SERVER['REMOTE_ADDR'];
 if (!isset($params['i'])) $params['i'] = $ip;

 /*
 $params should be an array siumlar to:
 Array
 (
 [l] => sELZl0ELZMrx97T
 [i] => 96.234.61.86
)
 */

 // MaxMind request URL
 $query = 'https://geoip.maxmind.com/';
 $query.= $service . '?' . http_build_query($params);
 // Get response from the URL
 $response = wp_remote_get($query);
 $results = $response['body'];
 // Turn response into array to easily grab what we need
 $results = explode(',', $results);

 echo '<pre>';
 print_r($results);
 echo '</pre>';
 exit();

 /*
 $results should be an array simular to:
 Array
 (
 [0] => US

MaxMind GeoIP | 289

www.it-ebooks.info

http://bit.ly/geoip-github
http://www.it-ebooks.info/

 [1] => "United States"
 [2] => NJ
 [3] => "New Jersey"
 [4] => Belmar
 [5] => 40.1784
 [6] => -74.0218
 [7] => 501
 [8] => 732
 [9] => America/New_York
 [10] => NA
 [11] =>
 [12] => "Verizon FiOS"
 [13] => "Verizon FiOS"
 [14] => verizon.net
 [15] => "AS701 MCI Communications Services
 [16] => Inc. d/b/a Verizon Business"
 [17] => Cable/DSL
 [18] => residential
 [19] => 7
 [20] => 99
 [21] => 31
 [22] => 93
 [23] =>
 [24] =>
)
 */
}
?>

When working with MaxMind GeoIP data, it might be a good idea to
utilize cookies to store a user’s geolocation data so you don’t have to
keep querying MaxMind’s API or querying the .dat file if you down‐
loaded the free database.

Google Maps JavaScript API v3
Everyone knows what Google Maps is, and I’m sure you have seen some WordPress
plugins using it. Google offers a JavaScript-based API for interacting with its maps, and
you can build anything from a basic map zoomed into a specified location to a custom
map with markers depicting various WordPress posts from a specific custom post type.

Besides all of the map functionality available via the Google Maps JavaScript API, Google
also has some other API services related to its maps.

Directions
You can use this service to calculate directions between various locations and return
step-by-step directions of what route(s) to follow. When creating a directions request,

290 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://bit.ly/googlemaps-api
http://www.it-ebooks.info/

you can pass in an origin or a location for your directions to start and a destination or
the end location. You can also specify the travel mode: driving (default), bicycling,
transit, or walking.

Distance Matrix
The Google Distance Matrix API is a service that provides travel distance and time for
a matrix of origins and destinations. The information returned is based on the recom‐
mended route between the start and endpoints, as calculated by the Google Maps API,
and consists of rows containing duration and distance values for each pair.

Elevation
This API provides a way to query elevation data for provided locations.

Geocoding
This API will allow you to query geolocation data like latitude and longitude from a
provided address. You can also use reverse geocoding to provide the closest address for
a given latitude and longitude.

Street View Service
This API allows you to interact with Google Street View. This API is really cool because
you can access all of the photos and locations available in Google Street View.

Practical App
In Example 12-2, we are going to create a custom meta box called Location that will
allow a user to associate an address with a post. We will also display a Google Map in
the meta box with a marker of a user-specified address. Sometimes the markers on a
map don’t line up exactly on the map where they should actually be. In our example
code, you can drag and drop the marker to a new location, and when the post is updated,
the marker will be saved in the location you moved it to.

Example 12-2. Creating a Location meta box
<?php
// Only turn this on in the backend
add_action('admin_init', 'sp_register_meta_directions');

// Add Directions Meta Box
function sp_register_meta_directions() {
 add_meta_box(
 'sp-directions-meta',
 'Address Information',
 'sp_directions_meta_box',

Google Maps JavaScript API v3 | 291

www.it-ebooks.info

http://www.it-ebooks.info/

 'post',
 'normal',
 'high'
);
 add_action('save_post', 'sp_directions_save_meta');
}

// Meta Box
function sp_directions_meta_box($post='') {
 // Get curretn post ID
 $post_id = $post->ID;
 // Get pos meta data if exists
 $sp_directions_address = get_post_meta($post_id,
 '_sp_directions_address',
 true
);
 $sp_directions_latitude = get_post_meta($post_id,
 '_sp_directions_latitude',
 true
);
 $sp_directions_longitude = get_post_meta($post_id,
 '_sp_directions_longitude',
 true
);
 // Output text box to collect any address?>
 <input type="text"
 id="sp_directions_address"
 name="sp_directions_address"
 value="<?php echo $sp_directions_address;?>"
 size="60" />
 *123 Main St, New York, NY
 <input type="hidden"
 id="sp_directions_latitude"
 name="sp_directions_latitude"
 value="<?php echo $sp_directions_latitude;?>"/>
 <input type="hidden"
 id="sp_directions_longitude"
 name="sp_directions_longitude"
 value="<?php echo $sp_directions_longitude;?>"/>
 <?php // Javascript for the Map?>
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript">
 // sets the hidden text boxes for lat & lng to the lat & lng of the dragged
 // and dropped marker
 function updateMarkerPosition(latLng) {
 document.getElementById('sp_directions_latitude').value = latLng.lat();
 document.getElementById('sp_directions_longitude').value = latLng.lng();
 }

 // initialize the Google map
 function sp_map_initialize() {

292 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

 var map = new google.maps.Map(document.getElementById("map_canvas"), {
 scaleControl: true});
 var bounds = new google.maps.LatLngBounds();
 map.setMapTypeId(google.maps.MapTypeId.HYBRID);

 var myLatLng = new google.maps.LatLng(
 <?php echo $sp_directions_latitude;?>,
 <?php echo $sp_directions_longitude;?>
);
 bounds.extend(myLatLng);

 var marker<?php echo $post_id;?> = new google.maps.Marker(
 {map: map, draggable: true, position:
 new google.maps.LatLng(
 <?php echo $sp_directions_latitude;?>,
 <?php echo $sp_directions_longitude;?>)});

 google.maps.event.addListener(
 marker<?php echo $post_id;?>,
 'dragend',
 function(){
 updateMarkerPosition(
 marker<?php echo $post_id;?>.getPosition())
 ;
 }
);

 map.fitBounds(bounds);
 }

 setTimeout("sp_map_initialize()",10);
 </script>
 <div id="map_canvas" style="height:300px;width:100%;"></div>
 <?php
}

// Save Data
function sp_directions_save_meta($post_id) {
 $address=strip_tags($_POST['sp_directions_address']);
 $lat=strip_tags($_POST['sp_directions_latitude']);
 $lng=strip_tags($_POST['sp_directions_longitude']);
 if ($address != get_post_meta($post_id, '_sp_directions_address', 1)) {
 sp_get_lat_lng($post_id, $address);
 }elseif ($lat) {
 update_post_meta($post_id, '_sp_directions_latitude', $lat);
 update_post_meta($post_id, '_sp_directions_longitude', $lng);
 }
}

// Get lat & lng from address and update post meta
function sp_get_lat_lng($post_id, $address) {

Google Maps JavaScript API v3 | 293

www.it-ebooks.info

http://www.it-ebooks.info/

 global $wpdb, $bp;
 if ($address) {
 // Get GeoLocattion data from Google by passin in an address
 $url = 'http://maps.googleapis.com/maps/api/geocode/json';
 $g_address = $url . '?sensor=true&address='.urlencode($address);
 $g_address = wp_remote_get($g_address);
 $g_address = $g_address["body"];
 $g_address = json_decode($g_address);
 $lat = $g_address->results[0]->geometry->location->lat;
 $lng = $g_address->results[0]->geometry->location->lng;

 /*
 // Uncomment if you want to see the raw JSON response
 echo '<pre>';
 print_r($g_address);
 echo '</pre>';
 exit();
 */

 // update post meta for lat and lng
 update_post_meta($post_id, '_sp_directions_latitude', $lat);
 update_post_meta($post_id, '_sp_directions_longitude', $lng);
 }else {
 // if no address then delete post meta
 delete_post_meta($post_id, '_sp_directions_latitude');
 delete_post_meta($post_id, '_sp_directions_longitude');
 }
}
?>

Google Translate
What if you wanted to auto-translate pieces of content into various languages? You can
do this utilizing Google’s translation API. There are quite a few WordPress plugins that
leverage this API; but depending on your scenario, you may want to translate various
strings of text on the fly, and you can certainly use this API to do so.

This API is not free but can be well worth the cost depending on how important it is to
you to automatically translate any of your content.

Google+
Google’s social network, Google+, has a pretty extensive API. Unlike Facebook’s and
Twitter’s APIs, the Google+ API doesn’t allow you to push data to it; it only allows you
to pull data. Hopefully one day it will open it up to allow third-party developers to post
data to it.

294 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://bit.ly/translate-api
http://bit.ly/goo-api
http://www.it-ebooks.info/

Google+ offers specific APIs for Android, iOS, Hangouts, and the Web via JavaScript
and an extensive HTTP API. For integrating with WordPress, it is best to use the Java‐
Script and/or the HTTP API.

There are four main resource types within the HTTP API, and each resource type has
a few methods. Each method returns its results in a JSON data structure.

People
The people resource type allows you to access information about Google+ members.
You can return data from specific member’s profiles, search profiles for particular key‐
words, and return data lists of members that have +1’d or shared activity.

Activities
The activity resource type allows you to access any activity or stream notes of a particular
user in a list. You can return specific activity by ID, and you can search any public activity.

Comments
A comment is a reply to any activity. The comments resource allows you to access a list
of all comments for a provided activity. You can also get a specific comment by its ID.

Moments
Moments describe activities that users engage within your app. The app activities com‐
prise a moment type, a target, and many optional fields. The fields that are required
when inserting moments depend on the type of moment. Your app can also list moments
and delete moments that it previously wrote for the authenticated user.

Most of Google’s APIs are very similar, so once you learn one or two,
you should be able to pick up most of them fairly quickly. For a
complete reference of Google’s APIs, go to their API Explorer.

Amazon Product Advertising API
Lots of people buy and sell products on Amazon.com, everything from golf balls to
video games to kitchen sinks. Most of the product data is made available via Amazon’s
Product Advertising API. You can access basic product information, including a prod‐
uct’s price, categories, customer reviews, similar products, and accessories. Most of the
information that is available on any product on Amazon.com is also available via its
API.

Amazon Product Advertising API | 295

www.it-ebooks.info

http://bit.ly/api-explorer
http://bit.ly/api-list
http://bit.ly/api-list
http://www.it-ebooks.info/

The first thing you will need to do to start using the API is to become an Amazon
Associate and get your Associate Tag/Associate ID. This is a unique identifier you will
need to make requests on the API. Once you sign up, you should receive an email with
your Associate Tag in it. Along with an Associate Tag, you will also need an AWS Access
Key ID and Secret Access Key. You can get those using your basic Amazon account
information at https://affiliate-program.amazon.com/gp/flex/advertising/api/sign-
in.html. Once you are signed in, click the Manage Your Account link, then click the
Click Here link in the Access Identifiers box; this will take you to a page where you can
generate/access both your Access Key ID and Secret Access Key.

Amazon.com is a great source of product information if you are looking to build any
type of web application that has anything to do with various products and their data.
You can bet that no matter what the product is, Amazon will most likely have data on
it. In our example, we will be building a script to save various school supplies and their
data from Amazon’s API as individual WordPress posts.

Request Parameters
When creating a request to Amazon, you will need the following required parameters:
Service

Specifies the Product Advertising API service. Amazon offers some other web
services, but we will be focusing on the Product Advertising API, so the value should
be “AWSECommerceService”.

AssociateTag
This is your Amazon Associate Tag/Associate ID.

AWSAccessKeyId
This is your AWS Access Key ID.

Operation
The operation you would like to perform.

Operations
Depending on what operation you use, you can pass in additional request parameters
to help refine your results. The following is a list of the available operations and what
additional request parameters can be passed in with them:
BrowseNodeLookup

Given a browse node ID, BrowseNodeLookup returns the specified browse node’s
name, children, and ancestors. The names and browse node IDs of the children and
ancestor browse nodes are also returned.

296 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://bit.ly/amazon-affil
http://bit.ly/amazon-affil
http://www.it-ebooks.info/

CartAdd
The CartAdd operation enables you to add items to an existing remote shopping
cart. CartAdd can only be used to place a new item in a shopping cart.

CartClear
The CartClear operation enables you to remove all of the items in a remote shopping
cart.

CartCreate
The CartCreate operation enables you to create a remote shopping cart.

CartGet
The CartGet operation enables you to retrieve the IDs, quantities, and prices of all
of the items, including SavedForLater items, in a remote shopping cart.

CartModify
The CartModify operation enables you to change the quantity of items that are
already in a remote shopping cart and move items from the active area of a cart to
the SaveForLater area or the reverse.

ItemLookup
Given an Item identifier, the ItemLookup operation returns some or all of the item
attributes, depending on the response group specified in the request. By default,
ItemLookup returns an item’s ASIN, Manufacturer, and ProductGroup, as well as
the Title of the item.

ItemSearch
The ItemSearch operation returns up to 10 search results per page. When condition
equals “All,” ItemSearch returns additional offers for those items, one offer per
condition type.

SimilarityLookup
The SimilarityLookup operation returns up to 10 products per page that are similar
to one or more items specified in the request. This operation is typically used to
pique a customer’s interest in buying something similar to what she’s already or‐
dered.

Response Groups
A response group helps target the information returned by a query. Each operation has
specific response groups that it can use. Some response groups utilize other response
groups.

Amazon Product Advertising API | 297

www.it-ebooks.info

http://www.it-ebooks.info/

Amazon keeps a full list of response groups in the AWS documenta‐
tion.

In Example 12-3, we are going to query Amazon for any books about WordPress. This
script can be used to import books into a CPT called Books. You could create post meta
for all of the additional book information and even save the images as post attachments.

Example 12-3. Search for WordPress books
<?php
add_action('init', 'wds_get_aws_products');

function wds_get_aws_products() {

 //set our aws associate tag, access key id & secret access key
 $AssociateTag = 'webd167-423234';
 $AWSAccessKeyId = 'ACAJBDXQSKILGQDWZSNK';
 $AWSSecretAccessKey = '26AB/UhHl2kYu/YF8QokT1+078p5Ax/tgECtWbwug';

 //set up our search parameters
 $params = array(
 'AWSAccessKeyId' => $AWSAccessKeyId,
 'AssociateTag' => $AssociateTag,
 'Service' => 'AWSECommerceService',
 'ItemPage' => '10',
 'Operation' => 'ItemSearch',
 'SearchIndex' => 'Books',
 'Keywords' => "WordPress",
 'ResponseGroup' => 'Offers,ItemAttributes,OfferFull,Images');

 $params['Timestamp'] = gmdate("Y-m-d\TH:i:s.\\0\\0\\0\\Z", time());
 $url_parts = array();
 foreach (array_keys($params) as $key) {
 $part = str_replace('%7E', '~', rawurlencode($params[$key]));
 $url_parts[] = $key . '=' . $part;
 }

 sort($url_parts);
 $url_string = implode("&", $url_parts);
 $string_to_sign = "GET\necs.amazonaws.com\n/onca/xml\n" . $url_string;
 $signature = hash_hmac("sha256",
 $string_to_sign,
 $AWSSecretAccessKey,
 TRUE
);
 $signature = urlencode(base64_encode($signature));
 $url = 'http://ecs.amazonaws.com/onca/xml?';
 $url.= $url_string . "&Signature=" . $signature;

298 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://bit.ly/response-groups
http://www.it-ebooks.info/

 $response = file_get_contents($url);

 $xml = simplexml_load_string($response);

 echo '<pre>';
 print_r($xml);
 echo '</pre>';
 exit();

}
?>

Twitter REST API v1.1
Twitter has an extensive API for publishing and getting tweets from its platform as well
as allowing its users to sign in to any web application via a Twitter app. With the Twitter
API, you can access data from and make updates to some of the following resources:
Timelines

Timelines are collections of various tweets, ordered with the most recent first.

Tweets
Tweets are what make up Twitter; they are 140-character status updates with ad‐
ditional associated metadata.

Search
You can find tweets based on queries with provided keywords.

Direct Messages
You can access these private messages sent back and forth between users of your
application.

Friends and Followers
You can access relationships between various users as well as manage some of those
relationships for authenticated users.

Users
You can access user data as well as update it for authenticated users.

Suggested Users
You can access suggested users for authenticated users.

Favorites
Users favorite tweets that they like. You can access favorited tweets as well as favorite
specific tweets for authenticated users.

Lists
Collections of tweets, called from a curated list of Twitter users. You can access lists
as well as create lists for authenticated users.

Twitter REST API v1.1 | 299

www.it-ebooks.info

http://bit.ly/twitter-apis
http://www.it-ebooks.info/

Saved Searches
Allows users to save their search criteria for reuse later.

Places and Geo
Allows you to access geolocation data attached to tweets that have that data available.
You can also attach location data to any tweets of authenticated users.

Trends
The Trends methods allow you to explore what’s trending on Twitter.

Spam Reporting
Can be used to report spam to Twitter.

OAuth
Twitter offers applications the ability to issue authenticated requests on behalf of
the application itself (as opposed to on behalf of a specific user). Twitter’s imple‐
mentation is based on the Client Credentials Grant flow of the OAuth 2 specifica‐
tion.

The application-only auth flow follows these steps:

1. An application encodes its consumer key and secret into a specially encoded set of
credentials.

2. An application makes a request to the POST oauth2/token endpoint to exchange
these credentials for a bearer token.

3. When accessing the REST API, the application uses the bearer token to authenticate.

Set Up Your App on Twitter.com
To set up a new Twitter app, you must be signed in to Twitter and go to https://dev.twit‐
ter.com/apps. You can click the Create New App button to get started building your app.
Fill out all of the required fields on the form and submit your app. On your app details
page, you will find all of the information you will need for interacting with your app
from within WordPress. Pay attention to the following:

• Consumer Key
• Consumer Secret
• Access Token
• Access Token Secret

You will need to copy these values later.

300 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

Leverage a PHP Library
There are several PHP libraries available out there for interacting with Twitter’s API;
we like to use twitteroauth by Abraham Williams. It’s very simple to drop the necessary
files you need in a subdirectory of a custom plugin and reference them.

You can download the ZIP file and extract the files into a lib directory in your custom
plugin or theme. You will just need to reference the library in a manner like the following
in your code: require_once lib/twitteroauth.php;.

In Example 12-4, we are going to search Twitter for any tweets that contain the keyword
“bwawwp.”

Example 12-4. Searching Twitter
<?php
/*Plugin Name: BWAwWP - Twitter */

// reference the php library we downloaded from GitHub
require_once 'lib/twitteroauth.php';

// Copy over credentials from the Twitter app you created. Below are not real keys.
define('C_KEY', '0LU1wUibUKP3bccx2NFlK');
define('C_SECRET', 'KGYQnbZlZaNPqdg2INldACazetPLwvprRqbo');
define('A_TOKEN', '11018212-3qMnqt8D4HpCb2ACzyVoK1kAW');
define('A_TOKEN_SECRET', 'jUMC3Ocy6Yx7JV4xRFhZ5eiCbiIyjc');

add_action('init', 'sp_twitter_search');
function sp_twitter_search() {
 // our search term
 $q = 'bwawwp';

 // call TwitterOAuth and pass in Twitter credentials.
 $toa = new TwitterOAuth('C_KEY', 'C_SECRET', 'A_TOKEN', 'A_TOKEN_SECRET');

 // call the search tweets method
 $search = $toa->get('search/tweets', array('q' => $q));

 echo "<pre>";
 print_r($search);
 echo "</pre>";
 exit();

}
?>

You can start to imagine the possible ways Twitter data can be integrated with Word‐
Press. Our example code could be useful for searching Twitter for any keywords and
pulling those tweets into posts in a CPT. They could be saved as BuddyPress activities

Twitter REST API v1.1 | 301

www.it-ebooks.info

http://bit.ly/awilliams-oauth
http://www.it-ebooks.info/

for a BuddyPress group. You could search for tweets having to do with various keywords
and locations and plot them on a Google Map. The possibilities are really endless.

If you are utilizing Twitter’s API to post data, like favoriting and retweeting tweets or
following other users, make sure you comply with Twitter’s usage terms and don’t go
over your rate limit. You don’t want to get your account banned, and you especially don’t
want to get a user of your application’s account banned.

Facebook
Do you Facebook it up all the time? If you don’t, there are millions of people who do.
Facebook has a few different APIs available, but its Graph API allows access to most of
the data available to users. You can leverage WordPress to make native Facebook apps
because a Facebook canvas page is basically an iframe. Why build something from
scratch when you can link Facebook users to WordPress users and utilize WordPress as
a Facebook app any way you see fit?

We are going to briefly go over Facebook’s Graph API, the primary way that data is
retrieved from or posted to Facebook.

Pictures
You can add /picture to the end of most object URLs like people, events, groups, pages,
applications, and photo albums. You can also add the following query strings to the end
of a picture URL to change how the image is returned:

• type—Values can be square, small, normal, or large (type=square).
• width—A numerical value of the width you want the image to be (width=200).
• height—A numerical value of the height you want the image to be (height=200).
• return_ssl_resources—If set to 1, the image will be returned over a secure connec‐

tion.

For example, if you go to the URL https://graph.facebook.com/bmess/picture?
type=large, you will see my latest Facebook profile picture in a large view. Try this out
with your Facebook profile name and some of the query string arguments you can use.

Search
All Graph API search queries require an access token passed in with the access_to
ken=<token> parameter. The type of access token you need depends on the type of
search you’re running. Searches across page and place objects require an app access
token, while all other endpoints require a user access token.

Facebook supports searching the following objects:

302 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://bit.ly/rate-limiting
http://bit.ly/fb-javascript
http://www.it-ebooks.info/

• Public Posts
• People
• Pages
• Events
• Groups
• Places
• Checkins

Permissions
Your application may need to interact with Facebook users in various ways, and you
may need permission from end users to access some of their information via the Graph
API:
Email Permissions

Email is a protected property and must be specifically asked for and granted.

Extended Permissions
Because these permissions give access to more sensitive info and the ability to pub‐
lish and delete data, they are optional when presented to users in the login dialog.
They can also be removed by a user through privacy settings. Apps should be built
to handle revoked permissions without reducing the user experience.

Extended Profile Properties
These permissions cannot be revoked in the login dialog during the login flow,
meaning they are nonoptional for users when logging in to your app. If you want
them to be optional, you should structure your app to only request them when
absolutely necessary and not upon initial login.

Open Graph Permissions
These permissions allow your app to publish actions to the Open Graph and also
to retrieve actions published by other apps.

Page Permissions
Permissions related to management of Facebook Pages.

Public Profile and Friend List
The Public Profile and Friend List is the basic information available to an app. All
other permissions and content must be explicitly asked for.

Facebook | 303

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application
To build a basic Facebook app and/or to use Facebook to log in users to your web app,
you will need to create an app on Facebook. Go to the UI and click on the Create New
App button. Follow the instructions. If you need help, search online; we don’t want to
walk through all the ins and outs of creating a basic app. Once you have created an app,
you will have access to the App ID/API Key and the App Secret Key. You now have a
very basic Facebook app.

Leverage What’s Out There
You could build your own login process for Facebook, but why? Use what is already out
there. We like to leverage the plugin WordPress Social Login. This plugin provides you
with a nice UI for managing logins to your WordPress site for Facebook and a number
of other social networks. This plugin only really authenticates users: what if we need to
do more than that? What if we need to access specific users’ posts and friends or even
post to a user’s wall using the Graph API? We can build an add-on plugin that uses an
already authenticated user from the WordPress Social Login to handle whatever func‐
tionality we may require.

You may need to alter the WordPress Social Login plugin a little, depending on what
you want to to do. The has all of the Facebook permissions that we need. If you were
building something that requires additional permissions, you would need to alter the
plugin itself.

If you download the plugin and open up /plugins/wordpress-social-login/hybridauth/
Hybrid/Providers/Facebook.php, you will see a Hybrid_Providers_Facebook class with
a variable named scope that looks like this:

public $scope = "email, user_about_me, user_birthday, user_hometown,
user_website, read_stream, offline_access, publish_stream, read_friendlists";

You can alter the scope string to the exact permissions you need for your application.

Twilio
Need to be able to send customized SMS alert messages to members? Maybe your ap‐
plication needs an additional layer of security and you need to verify user accounts via
random activation codes text messaged to mobile phones. Twilio has a great web service
that lets you send and receive SMS messages back and forth between users’ cell phones
and your account(s) with them.

Maybe a school would like to verify the contact numbers of parents so they can later
send text message alerts with import information like if their child is playing hooky and
has cut a class. The first thing you should do is download the Twilio PHP library from
GitHub. If you are building a custom plugin, drop Twilio.php and the Twilio directory

304 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

https://developers.facebook.com/apps
http://bit.ly/wp-social-login
http://bit.ly/fb-g-api
http://www.twilio.com/sms/api
http://bit.ly/twilio-php
http://bit.ly/twilio-php
http://www.it-ebooks.info/

into a lib directory in your plugin. Your directory structure should look something
like /wp-content/plugins/your-plugin/lib/Twilio.

We recommend interacting with the Twilio API over SSL.

Microsoft Sharepoint
Microsoft? A lot of people in the open source world like to bash Microsoft. The fact of
the matter is governments and big businesses across the world use many Microsoft
products; and although we think that open source will one day change this, it isn’t going
to happen anytime soon. SharePoint is Microsoft’s flagship collaboration product these
days; it’s web based and super powerful. If you have ever seen a large-scale SharePoint
deployment, then you know how useful and integrated into a business’s workflow it can
be. One of SharePoint’s most impressive features is its integration with the entire Mi‐
crosoft Office suite.

SharePoint has a web service available for almost every feature it offers. You can actually
push and pull almost any data available in a SharePoint deployment via these web serv‐
ices:
Administration Web service

Provides methods for managing a deployment of Microsoft Windows SharePoint
Services, such as for creating or deleting site collections.

Alerts Web Service
List and delete alert subscriptions. Alert subscriptions specify when and how no‐
tifications are sent to users when changes are made to content stored on the server.
The protocol does not specify the creation or editing of alert subscriptions.

Authentication Web Service
Provides classes for logging on to a SharePoint site that is using forms-based au‐
thentication.

Copy Web Service
Provides services for copying files within a SharePoint site and between SharePoint
sites.

Document Workspace Web Service
Exposes methods for managing Document Workspace sites and the data they con‐
tain.

Forms Web Service
Provides methods for returning forms that are used in the user interface when
working with the contents of a list.

Microsoft Sharepoint | 305

www.it-ebooks.info

http://msdn.microsoft.com/
http://www.it-ebooks.info/

Imaging Web Service
Provides methods that enable you to create and manage picture libraries.

List Data Retrieval Web Service
An adapter service that provides a method for performing queries against Share‐
Point lists.

Lists Web Service
The Lists Web service provides methods for working with SharePoint lists, content
types, list items, and files.

Meetings Web Service
Enables the creation and management of Meeting Workspace sites.

People Web Service
Provides classes that can be used to associate user identifiers with security groups
for Windows SharePoint Services website permissions. User IDs are validated
against Active Directory Domain Services as well as various role or membership
providers. SPGroup security information may also be stored in a collection of cross-
site groups for the site collection.

Permissions Web Service
The Permissions Web service provides methods for working with list and site per‐
missions in Windows SharePoint Services.

SharePoint Directory Management Web Service
Provides classes that enable requests for various management operations for email
distribution groups.

Site Data Web Service
The Site Data web service supports site indexing by external indexing services.
Indexing is the process of building an external index of the website, facilitating
search, auditing, or cataloging of the site content.

Sites Web Service
The Sites Web service provides methods and properties that support export and
import operations using SOAP calls against Windows SharePoint Services websites
(SPWeb instances) to allow migrating site content from one location to another.
The Sites Web service provides one of three ways to migrate content from one
Windows SharePoint Services website to another.

Search Web Service
Enterprise Search in Microsoft Office SharePoint Server exposes its search func‐
tionalities through the Query web service. This allows you to access Enterprise
Search results from client applications and web applications outside of the context
of a SharePoint site.

306 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Groups Web Service
The Users and Groups Web service provides methods for working with users and
groups in Windows SharePoint Services.

Versions Web Service
The Versions Web service provides methods for working with file versions in
SharePoint document libraries.

Views Web Service
The Views Web service provides methods for creating, deleting, or updating list
views in Windows SharePoint Services.

Web Part Pages Web Service
Provides methods for working with Web Parts.

Webs Web Service
Provides methods for working with sites and subsites.

For more information, check out the Microsoft Developer Network.

You can imagine how useful it might be pushing and pulling data to and from a docu‐
ment library. Think of document libraries or lists in SharePoint as custom post types in
WordPress. You can create custom fields and custom forms to store metadata, attach
documents, interact with other lists, and more when building document libraries. If you
needed a custom web app built with WordPress and needed to sync it with specific data
stored in a SharePoint site, you could use these web services. Also, if you need to com‐
pletely manage data in a SharePoint site and you don’t know the first thing about de‐
veloping in .NET, you could use these web services.

We Missed a Few
We have just mentioned a few available PHP libraries, web services, and APIs you could
leverage, depending on what you are trying to accomplish. These are some of the more
popular ones, but they are really just the tip of the iceberg of what’s available across the
Internet.

Don’t reinvent the wheel. Before you build anything, look to see what resources are
available to you. Leverage data from external data sources, and integrate your data with
external social networks and directories. Work smarter, not harder!

The following are some other popular web services you might want to mess around
with:

• FourSquare
• Instagram
• Salesforce

We Missed a Few | 307

www.it-ebooks.info

http://msdn.microsoft.com/
https://developer.foursquare.com/
http://instagram.com/developer/
http://bit.ly/soap-api
http://www.it-ebooks.info/

• flickr
• YouTube
• eBay
• Dropbox
• LinkedIn
• MailChimp
• Constant Contact

308 | Chapter 12: PHP Libraries, External APIs, and Web Services

www.it-ebooks.info

http://www.flickr.com/services/api/
https://developers.google.com/youtube/
http://developer.ebay.com/common/api/
https://www.dropbox.com/developers
http://developer.linkedin.com/apis
http://apidocs.mailchimp.com/
https://developer.constantcontact.com/
http://www.it-ebooks.info/

CHAPTER 13

Building WordPress Multisite Networks

With the release of WordPress version 3.0 came WordPress Multisite. WordPress Mul‐
tisite was known as WordPress Multiuser or WPMU prior to v3.0 because it was a
separate open source project. Since WordPress and WPMU share most of the same
code, it made sense to roll it all into one project. Multisite gives WordPress adminis‐
trators the ability to create their own network with multiple sites. All of the sites on a
Multisite network share the same database and the same source files. When Multisite
is set up, new tables are created in the database for each new website created on the
network.

Why Multisite?
If you are running more than one install of WordPress, you should consider using
Multisite. Some of the benefits include:

• Logging into one network and making any changes you need to any of your Word‐
Press sites with one administrator account.

• Making updates to WordPress and installed plugins and/or themes one time in one
place instead of multiple websites.

• Managing all of the users on your network in one location.
• Easily deploying a new website with a few clicks.
• If you are using a theme framework for all of the sites on your network, you could

make updates to all of your themes at the same time utilizing an available hook in
your theme.

309

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Multisite Network
Although setting up Multisite is not as easy as enabling it in a WordPress setting, it is
fairly straightforward. The first thing you should do if you are not setting up a brand-
new WordPress install is to make a backup of your database and file directory.

Open your wp-config.php file in the root of your WordPress directory and add the fol‐
lowing piece of code right under the line that says /* That’s all, stop editing!
Happy blogging. */:

define('WP_ALLOW_MULTISITE', true);

Refresh your WordPress admin dashboard and go to Tools → Network Setup. Here you
should see a few form fields asking you for the following information:
Subdomain or Subdirectory

How do you want to build the subsites on your Multisite network? If you want
subdomains like sub.domain.com, then choose subdomain. If you want do‐
main.com/sub, then choose subdirectory. You could always use a domain mapping
plugin to map any domain you want to either a subdomain or subdirectory.

Network Title
The name of your Multisite network.

Admin Email Address
The email of the network administrator, most likely your email address.

Once you have filled out the required information, click the Install button.

You should now see two text area boxes. The first text area box is going to contain code
that you will need to copy and paste into your wp-config.php file right under the line of
code you just previously added under the line that says /* That’s all, stop editing!
Happy blogging. */:

define('MULTISITE', true);
define('SUBDOMAIN_INSTALL', false);
define('DOMAIN_CURRENT_SITE', 'whatever.com');
define('PATH_CURRENT_SITE', '/');
define('SITE_ID_CURRENT_SITE', 1);
define('BLOG_ID_CURRENT_SITE', 1);

In this example, we chose to use subdirectories, which is why we are defining SUBDO
MAIN_INSTALL to false. If we chose subdomains, SUBDOMAIN_INSTALL would be set to
true.

The second text area box contains code that you will need to copy and paste into
your .htaccess file, which should also be in the root directory of your WordPress install:

RewriteEngine On
RewriteBase /

310 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

RewriteRule ^index\.php$ - [L]

add a trailing slash to /wp-admin
RewriteRule ^([_0-9a-zA-Z-]+/)?wp-admin$ $1wp-admin/ [R=301,L]

RewriteCond %{REQUEST_FILENAME} -f [OR]
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^ - [L]
RewriteRule ^([_0-9a-zA-Z-]+/)?(wp-(content|admin|includes).*) $2 [L]
RewriteRule ^([_0-9a-zA-Z-]+/)?(.*\.php)$ $2 [L]
RewriteRule . index.php [L]

Once you have copied and pasted the code from each text area box into the appropriate
files and saved them on your web server, you can refresh your browser.

You should now be prompted to log in again. Log in with your administrator account
username and password. Boom! You should now be running WordPress Multisite as a
Super Administrator. A Super Administrator has full access to all of the sites on your
network, while regular administrators only have full access to the sites they are admin‐
istrators of.

If you decided to use subdomains instead of subdirectories, there are a couple extra
steps you should take to save you time in the long run. You should set up a subdomain
wildcard record on your domain registrar DNS settings page. Remember when first
installing WordPress, you set the A (Host) record to the IP address of your hosting
account? Well, in the same place you did that, you should be able to add a host name of
“*” instead of “@” and point it to the same IP address as the “@” record. This acts as a
catchall for any subdomains on your main domain. In short, whatever.whatever.com or
somethingelse.whatever.com will both be mapped to the same IP address as the main
domain.

Depending on your hosting account, you may also need to set up a wildcard subdomain
entry to point to the same directory that your main domain is pointing to. So register
a new subdomain like *.whatever.com and point it to the same folder of whatever.com.

So why are we doing all of this? We set up a wildcard for subdomains so when we create
new sites on the Multisite network they will automatically work. If we didn’t set up a
wildcard for subdomains, we would have to manually add each subdomain we create
to the domain registrar and to the host. If we set up the subdomain wildcard once, it
will automatically work for any subdomain sites we create on our Multisite network.

Managing a Multisite Network
In your WordPress Admin Menu Bar, go to My Sites → Network Admin to administer
your new Multisite network. You can also go to whatever.com/wp-admin/network/ to
get to the network dashboard. The network admin area looks very similar to any other
site admin area on the network. To help keep track of where you are, just look for the /

Managing a Multisite Network | 311

www.it-ebooks.info

http://www.it-ebooks.info/

network/ at the end of the address bar in your browser because it can be easy to get
confused.

Dashboard
Your network dashboard is set up very similarly to the default dashboard you are used
to seeing on a standard WordPress install except the Right Now widget displays links
to quickly add new network sites or users. It also has two text boxes to search for specific
users or sites. Just like the regular WordPress dashboard, this network dashboard can
be completely customized using plugins or custom code.

Sites
Under Sites, you will manage all of the sites on your network. You can add any number
of sites you like and even give access to your network users to create their own sites.

Adding a new site is pretty straightforward; click the Add New button at the top of the
sites page or click Add New Link on the Sites submenu to get to the Add New Site page,
where you will see the following fields:
Site Address

Depending on how you set up your network, the address you enter will either be a
subdomain or a subdirectory.

Site Title
The title or name of your new site.

Admin Email
The email address of the administrator of your new site. This does not have to be
your email address; it could be a client or a user that you are setting up a new
WordPress site for.

Click the Add Site button, and voila, instant WordPress website. That sure saves a lot
of time setting up a brand new install of WordPress.

Users
All of the sites you create on your network will pull from the same users pool. Technically,
all users are stored in the wp_users table, and they each have user metadata tying them
to one or more sites on your network. From the network users page, you can manage
all of the users on any of your sites, set any user to be a Super Admin where the user
would have rights to manage the entire WordPress Multisite network, and see what sites
each user is a member of.

312 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

You can click the Add New button at the top of the Users page or the Add New Link on
the Users submenu to get to the Add New User page, where you will see the following
fields:
Username

The username of the new user you are creating. Remember, all lowercase and no
spaces or special characters.

Email
The email address of the new user you are adding.

Once you click the Add User button, the user you added should receive an email with
her username and password, which she can use to log in to the default top-level website
with a default role of whatever you set a new user’s role to be. Adding users this way
may not be ideal, as you will have to take another step to add them to specific subsites
on your network. Depending on your situation, it might be easier for you to add new
users to subsites directly from within that subsite, where you can add a new user the
same way you would on a typical install of WordPress. If you try to add a user to a site
and that username already exists on the network, you will receive a message indicating
that the username already exists. At that point, you can add the user to the site by adding
her username to the Add Existing User section and choosing a role and whether to send
a confirmation email to that user.

Themes
These are all of the themes available in the /wp-content/themes/ directory. You can con‐
trol all of the themes any of the sites on your network can use. You must network activate
a theme first before any site on your network can use it. If you don’t network activate a
theme, it won’t even show up as an option to activate on a site’s Appearance → Themes
page.

Plugins
These are all of the plugins available in the /wp-content/plugins/directory. You can net‐
work activate plugins so that they will automatically run on all sites on your network,
including new sites. Network-activated plugins will not show up on the individual site’s
plugins page. In fact, unless you specifically enable the plugins menu on the network
settings page (see next section), individual site administrators won’t even see the plugins
page. If you allow each site administrator to manage their own plugins, he will only be
able to activate plugins that are already installed; he will not be able to install his own
plugins. This is good because you want to know what plugins are available to all of the
sites on your network. You don’t want a site administrator to be able to install any plugin
he wants or a custom plugin that could potentially have a negative effect on other sites
on your network.

Managing a Multisite Network | 313

www.it-ebooks.info

http://www.it-ebooks.info/

To add a new plugin at the network level, you would add it the same way you would on
a normal install of WordPress.

Settings
These settings are unlike the typical WordPress settings you can update for a standard
WordPress site; these are network-wide settings. If you click the Settings link on the left
admin navigation menu, you should see the following settings:

Operational Settings

• Network Name
• Network Admin Email

Registration Settings

• Allow new registrations
• Registration notification
• Add New Users
• Banned Names
• Limited Email Registrations
• Banned Email Domains

New Site Settings

• Welcome Email
• Welcome User Email
• First Post
• First Page
• First Comment Author
• First Comment URL

Upload Settings

• Site upload space
• Upload file types
• Max upload file size

314 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

Menu Settings

• Enable administration menus

Updates
Just like in a standard WordPress installation, you can update core WordPress or any
outdated plugins and/or themes all from this page. The beauty of a Multisite network
is update everything once and they are updated across all of the sites on your network.
This is way more efficient than running updates on multiple WordPress installs. Update
WordPress, plugins, and themes…done and done!

Multisite Database Structure
All sites on a Multisite network share the same database. Enabling WordPress Multisite
creates a few new tables in your existing database.

Network-Wide Tables

wp_blogs

The wp_blogs table stores information about each site created on the Multisite network.
Table 13-1 shows the structure of the wp_blogs table.

Table 13-1. DB schema for wp_blogs table
Column Type Collation Null Default Extra

blog_id bigint(20) No None AUTO_INCREMENT

site_id bigint(20) No 0

domain varchar(200) utf8_general_ci No

path varchar(100) utf8_general_ci No

registered datetime No 0000-00-00 00:00:00

last_updated datetime No 0000-00-00 00:00:00

public tinyint(2) No 1

archived enum(0, 1) utf8_general_ci No 0

mature tinyint(2) No 0

spam tinyint(2) No 0

deleted tinyint(2) No 0

lang_id int(11) No 0

Multisite Database Structure | 315

www.it-ebooks.info

http://www.it-ebooks.info/

wp_blog_versions

The wp_blog_versions table stores which database schema each site on the network is
using. Table 13-2 shows the structure of the wp_blog_versions table.

Table 13-2. DB schema for wp_blog_versions table
Column Type Collation Null Default Extra

blog_id bigint(20) No 0

db_version varchar(20) utf8_general_ci No

last_updated datetime No 0000-00-00 00:00:00

wp_registration_log

The wp_registration_log table stores information about each user that registers on
your network like user ID, email address, IP address, and blog ID. Table 13-3 shows the
structure of the wp_registration_log table.

Table 13-3. DB schema for wp_registration_log table
Column Type Collation Null Default Extra

ID bigint(20) No None AUTO_INCREMENT

email varchar(255) utf8_general_ci No

IP varchar(30) utf8_general_ci No

blog_id bigint(20) No 0

date_registered datetime No 0000-00-00 00:00:00

wp_signups

The wp_signups table also stores information about each user that registers on your
network. Table 13-4 shows the structure of the wp_signups table.

Table 13-4. DB schema for the wp_signups table
Column Type Collation Null Default Extra

domain varchar(200) utf8_general_ci No

path varchar(100) utf8_general_ci No

title longtext utf8_general_ci No None

user_login varchar(60) utf8_general_ci No

user_email varchar(100) utf8_general_ci No

registered datetime No 0000-00-00 00:00:00

activated datetime No 0000-00-00 00:00:00

active tinyint(1) No 0

activation_key varchar(50) utf8_general_ci No

316 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

Column Type Collation Null Default Extra

meta longtext utf8_general_ci Yes NULL

wp_site
The wp_site table stores basic information about your Multisite network like the ID,
domain, and path. This table will usually only ever have one record in it. Table 13-5
shows the structure of the wp_site table.

Table 13-5. DB schema for wp_site table
Column Type Collation Null Default Extra

id bigint(20) No None AUTO_INCREMENT

domain varchar(200) utf8_general_ci No

path varchar(100) utf8_general_ci No

wp_sitemeta

The wp_sitemeta table stores all of the network-wide options or settings. Table 13-6
shows the structure of the wp_sitemeta table.

Table 13-6. DB schema for wp_sitemeta table
Column Type Collation Null Default Extra

meta_id bigint(20) No None AUTO_INCREMENT

site_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

Individual Site Tables
Every site added to your network is automatically given a blog_id when it is created.
Each site also creates its own tables, adding its blog_id to each table name. Let’s say we
are creating the first additional site on our network besides our main site. It would be
given a blog_id of 2, and the following tables would be created in the database:

• wp_$blog_id_options

• wp_$blog_id_posts

• wp_$blog_id_postmeta

• wp_$blog_id_comments

• wp_$blog_id_commentsmeta

• wp_$blog_id_links

Multisite Database Structure | 317

www.it-ebooks.info

http://www.it-ebooks.info/

• wp_$blog_id_term_taxonomy

• wp_$blog_id_terms

• wp_$blog_id_term_relationships

As you can see, these are the same exact tables included in a standard install of Word‐
Press, except they have a blog_id in the name. For every new site you create on your
Multisite network, these tables will be duplicated with that new site’s blog_id.

Shared Site Tables
All users on your Multisite network share the same wp_users and wp_usermeta tables.

Users are associated with various sites on the network by a few user meta keys in the
wp_usermeta table. If we added a new user to our second site on the network, these
meta keys would be created:

• primary_blog

• wp_2_capabilities

• wp_2_user_level

A user can only have one primary_blog but can be tied to multiple sites with the
capabilities and user_level meta keys. In a default install of WordPress and on the
top-level site on a Multisite network, these meta keys are stored as wp_capabilities
and wp_user_level. When you add users to sites on the network, new meta key records
are created for each user for the blog_id you are adding them to with whatever role you
added them as.

Multisite Plugins
If a regular WordPress plugin is built correctly, then it should work the way it was
intended on one or more sites on your network. Developers can also build WordPress
plugins specifically for Multisite. The following are a few of the more popular Multisite
plugins and what they are built to accomplish.

WordPress MU Domain Mapping
This plugin allows you to map your blog or site on the Multisite network to an external
domain. This does require manual installation, and complete instructions can be found
with the plugin.

318 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://bit.ly/wp-mumap
http://www.it-ebooks.info/

Blog Copier
This plugin is very useful for anyone who needs to duplicate the content from one site
for another site on the network. However, it only allows copying from one subsite to
another subsite and does not allow you to copy the top-level site.

More Privacy Options
Once installed, this plugin adds additional levels of privacy to the Reading settings.
These new levels are Network Users Only, Blog Members Only, and Admins Only, which
makes your site visible only to whichever of these groups you choose.

Multisite Global Search
This allows you to search across the multiple sites on your network and receive results
from all those sites. This plugin also comes with a built-in widget that can be used to
display the search bar in the sidebar. Both the widget and the results page come with a
customizable stylesheet. The plugin uses shortcodes, enabling you to insert the search
in any templates you choose.

Multisite Robots.txt Manager
This plugin allows you to create custom robots.txt files for each website on the network
and then quickly publish those files to the network or a website. This plugin will also
instantly add sitemap URLs to all the robots.txt files. It will also automatically detect 404
or old robots.txt files and allows for easy correction once identified.

Basic Multisite Functionality
When you activate WordPress Multisite, you can utilize Multisite-specific functionality
that was sitting there dormant in WordPress core just waiting to be used.

$blog_id
After reviewing the tables Multisite creates, we know that each site has a unique
blog_id. You can use this ID to tell WordPress what site you want to retrieve data from
or push data to.

The global variable $blog_id will automatically be set to the site you are on unless
changed with the switch_to_blog() function. This variable will be useful when writing
custom Multisite functionality:

<?php
function wds_show_blog_id(){
 global $blog_id;
 echo 'current site id: ' . $blog_id;

Basic Multisite Functionality | 319

www.it-ebooks.info

http://bit.ly/wp-blogcopy
http://bit.ly/wp-privacy
http://bit.ly/wp-globalsearch
http://bit.ly/wp-robotstxt
http://www.it-ebooks.info/

}
add_action('init', 'wds_show_blog_id');
?>

If you are on the top-level site or original site on your network, you should see 1. If you
are on the second site you created on your network, you should see 2.

is_multisite()
This function checks to see if WordPress Multisite is enabled. You should only run
Multisite-specific functionality if you are running Multisite. If you are not running
Multisite and try to use a Multisite function, you may get an error. Always do a check
to see if Multisite is enabled before executing any Multisite-specific code:

<?php
function wds_run_multisite_functions(){
 if (is_multisite())
 echo 'Run whatever WordPress Multisite functionality you want!';
}
add_action('init' , 'wds_run_multisite_functions');
?>

get_current_blog_id()
This function returns the blog_id that your are currently on. The function itself is
literally two lines of code:

<?php
// core function get_current_blog_id
function get_current_blog_id() {
 global $blog_id;
 return absint($blog_id);
}
?>

get_current_blog_id() is located in wp-includes/load.php.

switch_to_blog($new_blog)
This function switches the current blog to any blog you specify. This function is useful
if you need to pull posts or other information from other sites on your network. You
can switch back afterward using restore_current_blog(). Autoloaded options and
plugins are not switched with this function. This function accepts one parameter,
$new_blog, which is a required integer of the ID of the site to which you want to switch.

If we wanted to switch the current site we are on, we could run the following code in
any plugin function or theme file:

<?php
echo 'current site id: ' . get_current_blog_id() . '
';

320 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

switch_to_blog(2);
echo 'new current site id: ' . get_current_blog_id();
?>

The code should output something like:

current site id: 1
new current site id: 2

switch_to_blog() is located in wp-includes/ms-blogs.php.

restore_current_blog()
With this function we can restore the current site, after calling the switch_to_blog()
function. This function doesn’t accept any parameters.

If we wanted to restore a switched site, we could run the following code:

<?php
echo 'current site id: ' . get_current_blog_id() . '
';
switch_to_blog(2);
echo 'new current site id: ' . get_current_blog_id() . '
';
restore_current_blog();
echo 'original site id: ' . get_current_blog_id();
?>

The code should output something like:

current site id: 1
new current site id: 2
original site id: 1

restore_current_blog() is located in wp-includes/ms-blogs.php.

get_blog_details($fields = null, $get_all = true)
This function gets all of the available details of a site/blog and accepts two parameters:

• $fields—The ID or name of a specific blog, or an array of blog IDs or blog names.
Defaults to the current blog ID.

• $getall—Default is set to true to return all available data in the object.

This function returns an object of the following variables:

• blog_id—The ID of the blog being queried.
• site_id—The ID of the site this blog ID is attached to.
• domain—The domain used to access the blog.
• path—The path used to access the site.
• registered—Timestamp of when the blog was registered.

Basic Multisite Functionality | 321

www.it-ebooks.info

http://www.it-ebooks.info/

• last_updated—Timestamp of when the blog was last updated.
• public—1 or 0 indicating whether the blog is public or not.
• archived—1 or 0 indicating whether the blog is achieved or not.
• mature—1 or 0 indicating whether the blog has adult content or not.
• spam—1 or 0 indicating whether the blog has been marked as spam or not.
• deleted—1 or 0 indicating whether the blog has been deleted or not.
• lang_id—ID of the language the blog is written in.
• blogname—The name of the blog.
• siteurl—The URL of the site the blog belongs to.
• post_content—The number of posts in the blog.

If we wanted to display the entire object returned by this function, we would run the
following code:

<?php
$details = get_blog_details(1);
echo '<pre>';
print_r($details);
echo '</pre>';
echo 'Site URL:' . $details->siteurl;
echo 'Post Count:' . $details->post_count;
?>

The code should return a similar object and string:

stdClass Object
(
 [blog_id] => 1
 [site_id] => 1
 [domain] => schoolpress.me
 [path] => /
 [registered] => 2013-03-01 00:23:26
 [last_updated] => 2013-04-01 14:18:59
 [public] => 1
 [archived] => 0
 [mature] => 0
 [spam] => 0
 [deleted] => 0
 [lang_id] => 0
 [blogname] => School Press
 [siteurl] => http://schoolpress.me
 [post_count] => 10
)

This site URL is http://schoolpress.me and has 10 posts.

get_blog_details() is located in wp-includes/ms-blogs.php.

322 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

update_blog_details($blog_id, $details = array())
This function updates the details for a blog and accepts two parameters:

• $blog_id—A required integer of the ID of the blog you want to update.
• $details—A required array of any of the fields from the blog’s table as keys with any

values you want to update.

If we wanted to mark a particular site as deleted, we could run the following code:

<?php
update_blog_details(2, array('deleted' => '0'));
?>

update_blog_details() is located in wp-includes/ms-blogs.php.

get_blog_status($id, $pref)
This function is similar to the get_blog_details() function, except instead of return‐
ing an object of all of the fields in the wp_blogs table, it returns the value of one specific
field:

• $id—A required integer of the ID of the site you want to return a wp_blogs field
from.

• $pref—A required string of the field name from the wp_blogs table.

If we wanted to show when the current site was registered, we could run the following
code:

<?php
echo get_blog_status(get_current_blog_id(), 'registered');
?>

get_blog_status() is located in wp-includes/ms-blogs.php.

update_blog_status($blog_id, $pref, $value)
This function is similar to the update_blog_details() function, except instead of up‐
dating an array of fields in the wp_blogs table, it updates one specific field:

• $blog_id—A required integer of the ID of the site you want to update a wp_blogs
field for.

• $pref—A required string of the field name from the wp_blogs table you want to
update.

• $value—A required string of the field value you want to update.

Basic Multisite Functionality | 323

www.it-ebooks.info

http://www.it-ebooks.info/

If we wanted to mark the current site as deleted, we could run the following code:

<?php
update_blog_status(get_current_blog_id(), 'deleted', '1');
?>

update_blog_status() is located in wp-includes/ms-blogs.php.

get_blog_option($id, $option, $default = false)
This function saves you the hassle of using switch_to_blog() and then using the reg‐
ular WordPress get_option() function or writing a custom SQL query if you wanted
to grab an option from a specific site. This function will return an option value from
any site on your network by passing in the following parameters:

• $id—A required integer of the ID of the site you want to get an option from. You
can pass in null if you want to get an option from the current site.

• $option—A required string of the option name you want to get.
• $default—Optional string to return if the function does not find a matching option.

If we wanted to get the admin_email of a particular site, we could run the following
code:

<?php
echo 'The admin email for site id 2 is ' . get_blog_option(2, 'admin_email');
?>

get_blog_option() is located in wp-includes/ms-blogs.php.

update_blog_option($id, $option, $value)
This function updates any option for a particular site and accepts three parameters:

• $id—A required integer of the ID of the site you want to update an option on.
• $option—A required string of the option name you want to update.
• $value—A required string of the option value you want to update.

If we wanted to update the admin_email of a particular site, we could run the following
code:

<?php
update_blog_option(2, 'admin_email', 'brian@webdevstudios.com');
?>

update_blog_option() is located in wp-includes/ms-blogs.php.

324 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

delete_blog_option($id, $option)
This function deletes any option from a particular site and accepts two parameters:

• $id—A required integer of the ID of the site you want to delete an option on.
• $option—A required string of the option name you want to delete.

If we wanted to delete a custom site option from a particular site, we could run the
following code:

<?php
delete_blog_option(2, 'wds_custom_option');
?>

delete_blog_option() is located in wp-includes/ms-blogs.php.

get_blog_post($blog_id, $post_id)
This function gets a post from any site on the network and accepts two parameters:

• $blog_id—A required integer of the blog ID of the site you want to get a post from.
• $post_id—A required integer of the post ID of the post that you want to get.

If we wanted to get the post title of the third post from the second site on our network,
we could run the following code:

<?php
$post = get_blog_post(2, 3);
echo $post->post_title;
?>

get_blog_post() is located in wp-includes/ms-functions.php.

add_user_to_blog($blog_id, $user_id, $role)
This function adds a user to any site on the network with a specified user role and accepts
three parameters:

• $blog_id—A required integer of the blog ID of the site you want to add the user to.
• $user_id—A required integer of the user ID of the user that you want to add to the

site.
• $role—A required string of the role you want the user to have.

This function will return true if a user was added successfully; and if not, it will return
a WP_Error.

Basic Multisite Functionality | 325

www.it-ebooks.info

http://www.it-ebooks.info/

If we wanted to add a specific user to the second site on our network with a role of
Administrator, we could run the following code:

<?php
add_user_to_blog(2, 5, 'administrator');
?>

add_user_to_blog() is located in wp-includes/ms-functions.php.

create_empty_blog($domain, $path, $weblog_title, $site_id = 1)
This function creates a new site on the network after making sure it doesn’t already
exist. The UI for adding new sites in the network admin uses this function. This function
accepts four parameters:

• $domain—A required string of the domain of the new blog.
• $path—A required string of the path of the new blog.
• $weblog_title—A required string of the title or name of the new blog.
• $site_id—An optional integer of the site ID associated with the new blog. The de‐

fault is 1.

If we wanted to add a new site to our network we could run the following code:

<?php
create_empty_blog('someteacher.schoolpress.me', '/', 'Mr. Some Teacher');
?>

create_empty_blog() is located in wp-includes/ms-functions.php.

Functions We Didn’t Mention
We didn’t cover all of the Multisite functions available, but we did cover most of the
important ones. Well I guess that depends on what you are trying to accomplish. To find
all of the available Multisite functions, look in the code! You can find WordPress Mul‐
tisite functions in the following files:

• wp-admin/includes/ms.php
• wp-includes/ms-blogs.php
• wp-includes/ms-functions.php

326 | Chapter 13: Building WordPress Multisite Networks

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Localizing WordPress Apps

Localization (or internationalization) is the process of translating your app for use in
different locales and languages. This chapter will go over the tools and methods available
to WordPress developers to localize their apps, themes, and plugins.

You will sometimes see localization abbreviated as l10n and interna‐
tionalization sometimes abbreviated as i18n.

Do You Even Need to Localize Your App?
The market for web apps is increasingly global. Offering your app in other languages
can be a strong competitive advantage to help you gain market share against competition
within your own locale/language and will also help to stave off competition in other
locales/languages.

If you plan to release any of your code under an open source license, localizing it first
is a good way to increase the number of developers who can get involved in your project.
If your plugin or theme is localized, developers speaking other languages will be more
likely to contribute to your project directly instead of forking it to get it working in their
language.

If you plan to distribute a commercial plugin or theme, localizing your code increases
your number of potential customers.

If your target market is the United States only and you don’t have any immediate plans
to expand into other regions or languages, then you may not want to spend the time
preparing your code to be localized. Also, remember that each language or regional
version of your app will likely require its own hosting, support, customer service, and

327

www.it-ebooks.info

http://www.it-ebooks.info/

maintenance. For many businesses, this will be too high a cost to take on in the early
days of an application. On the other hand, you will find that the basics of preparing your
code for localization (wrapping string output in a _(), _e(), or _x() function) is simple
to do and often has other uses outside of localization.

Finally, it’s important to note that sometimes localization means more than just trans‐
lating your code. If your code interfaces with other services, you will need to make sure
that those services work in different regions or be prepared to develop alternatives. For
example, an important component of the Paid Memberships Pro plugin is integration
with payment gateways. Before localizing Paid Memberships Pro, Jason made sure that
the plugin integrated well with international payment gateways. Otherwise, people
would have been able to use Paid Memberships Pro in their language, but it wouldn’t
have worked with a viable payment gateway for their region.

How Localization Is Done in WordPress
WordPress uses the gettext translation system developed for the GNU translation
project. The gettext system inside of WordPress includes the following components:

• A way to define a locale/language
• A way to translate strings in your code
• .pot files containing all of the words and phrases to be translated
• .po files for each language containing the translations
• .mo files for each language containing a compiled version of the .po translations

Each of these components must be in place for your translations to work. The following
sections explain each step in detail. At the end, you should have all of the tools needed
to create a localized plugin and translated locale files.

Defining Your Locale in WordPress
To define your locale in WordPress, simply set the WPLANG constant in your wp-
config.php files:

<?php
// use the Spanish/Spain locale and language files.
define('WPLANG', 'es_ES');
?>

The term “locale” is used instead of language because you can have
multiple translations for the same language. For example, British
English is different from United States English. And Mexican Span‐
ish is different from Spanish Spanish.

328 | Chapter 14: Localizing WordPress Apps

www.it-ebooks.info

http://www.it-ebooks.info/

Prepping Your Strings with Translation Functions
The first step in localizing your code is to make sure that every displayed string is
wrapped in one of the translation functions provided by WordPress. They all work pretty
much the same way: some default text is passed into the function along with a do‐
main and/or some other information to let translators know what context to use when
translating the text.

We’ll go over the most useful functions in detail.

__($text, $domain = “default”)
This function expects two parameters: the $text to be translated and the $domain for
your plugin or theme. It will return the translated text based on the domain and the
language set in wp-config.php.

The $domain is a string set by you with the load_theme_textdomain() or load_plu
gin_textdomain() function (explained later). For example, the domain for our School‐
Press app is “schoolpress.” The domain for the Paid Memberships Pro plugin is “pmpro.”
You can use anything as long as it is unique and consistent.

The __() function is really an alias for the translate() function used
in the background by WordPress. There’s no real reason you couldn’t
call translate() directly, but __() is shorter and you’ll be using this
function a lot.

Here is an example of how you would wrap some strings using the __() function:

<?php
// setting a variable to a string without localization
$title = 'Assignments';

// setting a variable to a string with localization
$title = __('Assignments', 'schoolpress');
?>

_e($text, $domain = “default”)
This function expects two parameters: the $text to be translated and the $domain for
your plugin or theme. It will echo the translated text based on the domain and the
language set in wp-config.php.

This function is identical to the __() function except that it echoes the output to the
screen instead of returning it.

Here is an example of how you would wrap some strings using the _e() function:

Prepping Your Strings with Translation Functions | 329

www.it-ebooks.info

http://www.it-ebooks.info/

<?php
// echoing a var without localization
?>
<h2><?php echo $title; ?></h2>
<?php
// echoing a var with localization
?>
<h2><?php _e($title, 'schoolpress'); ?></h2>

In practice, you will use the __() function when setting a variable and the _e() function
when echoing a variable.

_x($text, $context, $domain = “default”)
This function expects three parameters: the $text to be translated, a $context to use
during translation, and the $domain for your plugin or theme. It will return the translated
text based on the context, the domain, and the language set in wp-config.php.

The _x() function acts the same as the __() but gives you an extra $context parameter
to help the translators figure out how to translate your text. This is required if your code
uses the same word or phrase in multiple locations, which might require different
translations.

For example, the word “title” in English can refer both to the title of a book and also a
person’s title, like Mr. or Mrs. In other languages, different words might be used in each
context. You can differentiate between each context using the _x() function.

In the following slightly convoluted example, we are setting a couple of variables to use
on a class creation screen in SchoolPress:

<?php
$class_title_field_label = _x('Title', 'class title', 'schoolpress');
$class_professor_title_field_label = _x('Title', 'name prefix', 'schoolpress');
?>
<h3>Class Description</h3>
<label><?php echo $class_title_field_label; ?></label>
<input type="text" name="title" value="" />

<h3>Professor</h3>
<label><?php echo $class_professor_title_field_label; ?></label>
<input type="text" name="professor_title" value="" />

The _x() and _ex() functions are sometimes referred to as
“*ex*plain” functions because you use the context parameter to fur‐
ther explain how the text should be translated.

330 | Chapter 14: Localizing WordPress Apps

www.it-ebooks.info

http://www.it-ebooks.info/

_ex($title, $context, $domain = “default”)
The _ex() function works the same as the _x() function but echoes the translated text
instead of returning it.

Escaping and Translating at the Same Time
In Chapter 7, we talked about the importance of escaping strings that are displayed
within HTML attributes or in other sensitive areas. When also translating these strings,
instead of calling two functions, WordPress offers a few functions to combine two
functions into one. These functions work exactly as you would expect them to by first
translating and then escaping the text:

• esc_attr__()

• esc_attr_e()

• esc_attr_x()

• esc_html__()

• esc_html_e()

• esc_html_x()

Creating and Loading Translation Files
Once your code is marked up to use the translation functions, you’ll need to generate
a .pot file for translators to use to translate your app. The .pot file will include a section
like the following for each string that shows up in your code:

#: schoolpress.php:108
#: schoolpress.php:188
#: pages/courses.php:10
msgid "School"
msgstr ""

The preceding section says that on lines 108 and 188 of schoolpress.php and line 10 of
pages/courses.php, the word “School” is used.

To create a Spanish-language translation of your plugin, you would then copy the
schoolpress.pot file to schoolpress-es_ES.po and fill in the msgstr for each phrase. It would
look like:

#: schoolpress.php:108
#: schoolpress.php:188
#: pages/courses.php:10
msgid "School"
msgstr "Escuela"

Creating and Loading Translation Files | 331

www.it-ebooks.info

http://www.it-ebooks.info/

Those .po files must then be compiled into the .mo format, which is optimized for
processing the translations.

For large plugins and apps, it is impractical to locate the line numbers for each string
by hand and keep that up to date every time you update the plugin. In the next section,
we’ll walk you through using the xgettext command-line tool for Linux to generate
your .pot file and the msgfmt command-line tool to compile .po files into .mo files.
Alternatively, the free program Poedit has a nice GUI to scan code and generate .pot, .po,
and .mo files and is available for Windows, Max OS X, and Linux.

Our File Structure for Localization
Before getting into the specifics of how to generate these files, let’s go over how we
typically store these files in our plugins.

For our SchoolPress app, we’ll store the localization files in a folder called languages
inside of the main app plugin. Each language will also have a directory to store other
language-specific assets. We’ll add all of our localization code, including the call to
load_plugin_textdomain(), in a file in the includes directory called localization.php.
So our file structure looks something like this:

1. ../plugins/schoolpress/schoolpress.php (includes localization.php)
2. ../plugins/schoolpress/includes/localization.php (loads text domain and other local‐

ization functions)
3. ../plugins/schoolpress/languages/schoolpress.pot (list of strings to translate)
4. ../plugins/schoolpress/languages/schoolpress.po (default/English translations)
5. ../plugins/schoolpress/languages/schoolpress.mo (compiled default/English transla‐

tions)
6. ../plugins/schoolpress/languages/en_US/ (folder for English/US language assets)
7. ../plugins/schoolpress/languages/schoolpress-es_ES.po (Spanish/Spain translations)
8. ../plugins/schoolpress/languages/schoolpress-es_ES.mo (compiled Spanish/Spain

translations)
9. ../plugins/schoolpress/languages/es_ES/ (folder for Spanish/Spain language assets)

When building a larger app with multiple custom plugins and a custom theme, locali‐
zation is easier to manage if you localize each individual plugin and theme separately
instead of trying to build one translation file to work across everything. If your plugins
are only going to be used for this one project, they can probably be built as includes or
module .php files in your main app plugin. If the plugins are something that you might
use on another project, then they should be localized separately so the localization files
can be ported along with the plugin.

332 | Chapter 14: Localizing WordPress Apps

www.it-ebooks.info

http://www.poedit.net
http://www.it-ebooks.info/

1. If not, locate and install the “gettext” package for your Linux distro.

Generating a .pot File
We’ll use the xgettext tool, which is installed on most Linux systems,1 to generate
a .pot file for our plugin.

To generate a .pot file for our SchoolPress app, we would open up the command line
and cd to the main app plugin directory at wp-content/plugins/schoolpress. Then execute
the following command:

xgettext -o languages/schoolpress.pot \
--default-domain=schoolpress \
--language=PHP \
--keyword=_ \
--keyword=__ \
--keyword=_e \
--keyword=_ex \
--keyword=_x \
--keyword=_n \
--sort-by-file \
--copyright-holder="SchoolPress" \
--package-name=schoolpress \
--package-version=1.0 \
--msgid-bugs-address="info@schoolpress.me" \
--directory=. \
$(find . -name "*.php")

Let’s break this down.
-o languages/schoolpress.pot

Defines where the output file will go.

--default-domain=schoolpress
Defines the text domain as schoolpress.

--language=PHP
Tells xgettext that we are using PHP.

--keyword=…
Sets xgettext up to retrieve any string used within these functions. Be sure to include
a similar parameter for any of the other translation functions (like esc_attr__) you
might be using.

--sort-by-file
Helps organize the output by file when possible.

Creating and Loading Translation Files | 333

www.it-ebooks.info

http://www.it-ebooks.info/

--copyright-holder="SchoolPress”
Sets the copyright holder stated in the header of the .pot file. This should be whatever
person or organization owns the copyright to the application, plugin, or theme
being built.

From the GNU.org website:
Translators are expected to transfer or disclaim the copy‐
right for their translations, so that package maintainers can
distribute them without legal risk. If [the copyright holder
value] is empty, the output files are marked as being in the
public domain; in this case, the translators are expected to
disclaim their copyright, again so that package maintainers
can distribute them without legal risk.

--package-name=schoolpress
Sets the package name stated in the header of the .pot file. This is typically the same
as the domain.

--package-version=1.0
Sets the package version stated in the header of the .pot file. This should be updated
with every release version of your app, plugin, or theme.

−−msgid-bugs-address="info@schoolpress.me”
Sets the email stated in the header of the .pot file to use to report any bugs in
the .pot file.

--directory=.
Tells xgettext to start scannging from the current directory.

$(find . -name “*.php”)
This appears at the end, and is a Linux command to find all .php files under the
current directory.

Creating a .po File
Again, the Poedit tool has a nice graphical interface for generating .po files from .pot
files and providing a translation for each string. Hacking it yourself is fairly straight‐
forward though: simply copy the .pot file to a .po file (e.g., es_ES.po) in your languages
directory and then edit the .po file and enter your translations on each msgstr line of
the file.

334 | Chapter 14: Localizing WordPress Apps

www.it-ebooks.info

http://bit.ly/gnu-gettext
http://www.it-ebooks.info/

Creating a .mo File
Once your .po files are updated for your locale, they need to be compiled into .mo files.
The msgfmt program for Linux can be used to generate the .mo files using the command
msgfmt es_ES.po --output-file es_ES.mo.

Loading the Textdomain
For each localized plugin or theme in your site, WordPress needs to know how to locate
your localization files. This is done via the load_plugin_textdomain(), load_textdo
main(), or load_theme_textdomain() function. All three functions are similar, but take
different parameters and make sense in different situations.

Whichever function you use, it should be called as early as possible in your app because
any strings used or echoed through translation functions before the textdomain is load‐
ed will not be translated.

Here are a few ways we could load our textdomain in includes/localization.php.
load_plugin_textdomain($domain, $abs_rel_path, $plugin_rel_path)

This function takes three parameters. The first is the domain of your plugin or app
(“schoolpress” in our case). You then use either the second or third parameter to
point to the languages folder where the .mo file should be loaded from. The
$abs_rel_path is deprecated, but still here for reverse-compatibility reasons. Just
pass FALSE for this and use the $plugin_rel_path parameter:

<?php
function schoolpress_load_textdomain(){
 //load textdomain from /plugins/schoolpress/languages/
 load_plugin_textdomain(
 'schoolpress',
 FALSE,
 dirname(plugin_basename(__FILE__)) . '/languages/'
);
}
add_action('init', 'schoolpress_load_textdomain', 1);
?>

The preceding code will load the correct language file from our languages folder
based on the WPLANG setting in wp-config.php. We use plugin_base

name(__FILE__) to get the path to the current file and dirname(...) to get the path
to the root plugin folder since we are in the includes subfolder of our school
press plugin folder.

load_textdomain($domain, $path)
This function can also be used to load the textdomain, but you’ll need to get the
locale setting yourself.

Creating and Loading Translation Files | 335

www.it-ebooks.info

http://www.it-ebooks.info/

Calling load_textdomain() directly is useful if you want to allow others to easily
replace or extend your language files. You can use code like the following to load
any .mo file found in the global WP languages directory (usually wp-content/
languages/) first and then load the .mo file from your plugin’s local languages di‐
rectory second. This allows developers to override your translations by adding their
own .mo files to the global languages directory:

<?php
function schoolpress_load_textdomain() {
 // get the locale
 $locale = apply_filters('plugin_locale', get_locale(), 'schoolpress');
 $mofile = 'schoolpress-' . $locale . '.mo';

 /*
 Paths to local (plugin) and global (WP) language files.
 Note: dirname(__FILE__) here changes if this code
 is placed outside the base plugin file.
 */
 $mofile_local = dirname(__FILE__).'/languages/' . $mofile;
 $mofile_global = WP_LANG_DIR . '/schoolpress/' . $mofile;

 // load global first
 load_textdomain('schoolpress', $mofile_global);

 // load local second
 load_textdomain('schoolpress', $mofile_local);
}
add_action('init', 'schoolpress_load_textdomain', 1);
?>

This version gets the local via the get_locale() function, applies the plugin_lo
cale filter, and then looks for a .mo file in both the global languages folder (typi‐
cally /wp-content/languages/) and the languages folder of our plugin.

load_theme_textdomain($domain, $path)
If you have language files for your theme in particular, you can load them through
the load_theme_textdomain() function like so:

<?php
function schoolpress_load_textdomain() {
 load_theme_textdomain(
 'schoolpress', get_template_directory() . '/languages/'
);
}
add_action('init', 'schoolpress_load_textdomain', 1);
?>

336 | Chapter 14: Localizing WordPress Apps

www.it-ebooks.info

http://www.it-ebooks.info/

Localizing Nonstring Assets
If you’ve gone through the previous steps, you will have everything you need to make
sure any string used by your plugin, theme, or app is properly translated. However, you
will sometimes have nonstring assets that still need to be swapped out depending on
the locale being used.

For example, you might have images with words in them that should be swapped for
alternative images with those words translated. Maybe your localized app uses different
colors for different countries; you can swap CSS files based on the detected locale.

We often use .html email templates in our plugins that need to be translated. We could
wrap the entire email in one big __() function, or we could create a directory of templates
for each language. The latter option might mean more work for your translators because
they’ll have to generate .html templates along with the .mo files, but it will give developers
using your code a bit more flexibility.

Below we’ll write some code to load images and email templates for our plugin based
on the local. Assume we have folders like this:

• schoolpress/images/ (default images)
• schoolpress/emails/ (default email templates)
• schoolpress/languages/es_ES/
• schoolpress/languages/es_ES/images/ (Spanish-version images)
• schoolpress/languages/es_ES/emails/ (Spanish-version email templates)

We’ll make sure that the functions that load these assets have hooks that will allow us
to override which directory is used to get them.

In the following code, we assume that the constant SCHOOLPRESS_URL points to the
relative URL for the SchoolPress plugin folder, for example, /wp-content/plugins/school‐
press/:

<?php
// Gets the full URL for an image given the image filename.
function schoolpress_get_image($image) {
$dir = apply_filters(
 'schoolpress_images_url',
 SCHOOLPRESS_URL . '/images/'
);
 return $dir . $image;
}
?>

Now in our includes/localization.php folder, we can put some code in place that will
filter schoolpress_images_url if a nondefault locale is used:

Localizing Nonstring Assets | 337

www.it-ebooks.info

http://www.it-ebooks.info/

<?php
function localize_schoolpress_images_url($url) {
 $locale = apply_filters('plugin_locale', get_locale(), 'schoolpress');
 if ($locale != 'en_US')
 $url = SCHOOLPRESS_URL . '/languages/' . $locale . '/images/';

 return $url;
}
add_filter('schoolpress_images_url', 'localize_schoolpress_images_url');
?>

You could do the same thing for loading emails. In the following code, we assume the
constant SCHOOLPRESS_PATH points to the server pathname for the SchoolPress plugin,
for example, /var/vhosts/schoolpress.com/httpdocs/wp-content/plugins/schoolpress/:

<?php
// Gets the full path for an email template given the email filename.
function schoolpress_get_email($email) {
 $dir = apply_filters(
 'schoolpress_emails_path', SCHOOLPRESS_PATH . '/emails/'
);
 return $dir . $image;
}

// Filters the schoolpress_emails_path value based on locale.
// Put this in includes/localization.php
function localize_schoolpress_emails_path($path) {
 $locale = apply_filters('plugin_locale', get_locale(), 'schoolpress');
 if ($locale != 'en_US')
 $path = SCHOOLPRESS_PATH . '/languages/' . $locale . '/emails/';

 return $path;
}
add_filter('schoolpress_emails_path', 'localize_schoolpress_emails_path');
?>

Depending on the use case of your web application, translating your app may be essential
to its success. When building any custom theme or plugin, it’s good practice to write all
of your code with localization in mind!

338 | Chapter 14: Localizing WordPress Apps

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Ecommerce

At some point, you may want to charge for access to your app or otherwise accept
payments on your site. In this chapter, we’ll go over the best ecommerce and member‐
ship plugins available and give you a few pointers for choosing between them. We’ll also
go through setting up a typical paywall in the software as a service (SaaS) model.

Choosing a Plugin
There are many different plugins that will allow you to accept payments on your site.
Each has its strengths and weaknesses. Choosing between the various plugins can be
daunting, but we’re here to help.

WordPress ecommerce plugins generally fall into two main categories: shopping cart
plugins and membership plugins. We’ll also cover a couple of plugins that don’t fall
inside these categories exactly.

All plugins in this section have these features in common:

• Integration with multiple payment gateways
• Secure checkout forms
• Saved order information
• Products (or membership levels) with pricing

Shopping Cart Plugins
The plugins we’ll cover in this section focus around offering products for sale on your
site.

Features of these plugins include:

339

www.it-ebooks.info

http://www.it-ebooks.info/

• A products custom post type
• The ability to browse products
• The ability to search through products
• The ability to purchase multiple products at once
• Support for shipping addresses and shipping price calculations
• Support for custom tax rules

Our favorite: Jigoshop
Why: the Jigoshop ecommerce plugin is released under the GPL license and available
in the WordPress plugin repository. Dozens of extensions exist for Jigoshop that do
everything from add support for different payment gateways to customize your emails
to conform to Norwegian tax rules.

The base plugin, which includes all of the functionality to add products and process
orders, is free. Most of the extensions are available for under $50 each, or you can
purchase a membership to gain access to all of the extensions sold through the main
Jigoshop store.

Jigoshop works well with any WordPress theme you might be using. There are Jigoshop-
specific themes, and you can also easily customize the default CSS that Jigoshop provides
with the plugin itself.

The code behind Jigoshop includes a lot of hooks and filters you can use to override the
default behavior. And the source code for the base Jigoshop plugin is managed on Git‐
Hub, making it easy to do a pull request to add your own hooks and filters or to get
involved in the development of the plugin. The Jigoshop developers are very responsive
with merging in new code that is clean and improves the plugin.

Notable runner-up: WooCommerce
WooCommerce, which was forked from Jigoshop, has improved both the underlying
code and the number and quality of extensions. The community is definitely behind
WooCommerce in a big way as WooCommerce is quickly eclipsing Jigoshop (and
ecommerce platforms in general) in terms of both user and developer adoption.

WooCommerce extensions are pricier than Jigoshop extensions. They run about $50–
$200 each, with no membership with access to all extensions. More important for many
app developers is the fact that licenses for each individual extension must be maintained
to ensure updates. In practice this isn’t so bad, but we worry about the added overhead
around using the licensed extensions versus a system like Jigoshop’s where you simply
pay for access to GPL code and get it.

Other shopping cart plugins include WP e-Commerce, Shopp Plugin, and Cart 66.

340 | Chapter 15: Ecommerce

www.it-ebooks.info

http://jigoshop.com
http://woocommerce.com
http://www.it-ebooks.info/

Membership Plugins
Plugins in this section focus around accepting payment for a membership access to a
WordPress site or app.

Features of these plugins include:

• Recurring pricing for subscriptions
• Tools for locking down content based on membership level

Our favorite: Paid Memberships Pro
Why: Besides being developed by our coauthor Jason Coleman, Paid Memberships
Pro is the only WordPress membership plugin that is 100% GPL and available for free
in the WordPress repository. Other plugins have either paid modules or upgraded ver‐
sions that are necessary to gain access to all of the plugin’s features.

All of the Paid Memberships Pro code is managed on GitHub and open to developer
input. Like Jigoshop, there are a lot of hooks and filters available to change the default
behavior of the plugin.

Nearly every membership site has a slightly different way of calculating upgrades or
special offers, or exactly how and when to lock down content. Instead of offering an
extra long settings page, Paid Memberships Pro carefully designed its hooks and filters
to make it easy to setup nearly any pricing model with just a few lines of code.

Another key difference between Paid Memberships Pro and some other membership
plugins is that Paid Memberships Pro uses its own table to define membership levels
and their relationships to users and orders. Some membership plugins use the built-in
WordPress user roles so that each membership level is also a user role. User roles are
very important in some membership sites (see Chapter 6), but in general, it’s better to
separate the concept of a membership level and a user role, allowing you for example
to have members who are admins and members who are subscribers. If you do need to
assign roles based on membership level, that is easy to do with Paid Memberships Pro,
and we have an example later in this chapter.

Other membership plugins include s2Members, Restrict Content Pro, Members,
WPMU Membership, and MemberPress.

Digital Downloads

Our favorite: Easy Digital Downloads
All of the ecommerce and membership plugins mentioned so far can be used for digital
products and downloads as well as physical goods. However, if you are only planning

Choosing a Plugin | 341

www.it-ebooks.info

http://www.paidmembershipspro.com
http://www.paidmembershipspro.com
http://www.it-ebooks.info/

1. Minus any fees.

2. At the high end, PCI compliance requires more expensive server setups and full-time resources to maintain
and document them properly. Some gateways have technology and processes to help you avoid those costs
while still keeping your customer data secure.

on selling digital goods, you should consider Easy Digital Downloads, which was de‐
veloped specifically for this use case.

Like Jigoshop, the core Easy Digital Downloads plugin is available for free in the Word‐
Press repository, while extensions are available for purchase at the plugin’s website.
Extension prices range from $6–$83. There is a core extensions bundle that includes
many of the most popular extensions at a reduced price.

Notable extensions that could be useful to app developers include the Software Licensing
and Product Support add-ons. The core plugin and all of the extensions are well coded
and well supported.

Payment Gateways
A payment gateway is a service that processes and sometime stores customer credit
cards and makes sure that the money winds up in your bank account.1 Popular gateways
in the United States include Stripe, PayPal, Authorize.net, and Braintree Payments.
There are dozens of gateways, many specializing in particular parts of the world or in
particular markets.

These are the important things to look out for when choosing a gateway:

• Does the gateway support the country and currency you do business in?
• Does the gateway integrate with the plugin you are using for ecommerce?
• Does the gateway work with the type of business you are in? Some gateways will

not work with adult sites, gambling sites, or other “high-risk merchants.”
• Does the gateway offer the features you need like recurring billing or stored credit

cards?
• How does the gateway handle Payment Card Industry (PCI) compliance?2

• Will the gateway work with my merchant account? (See the merchant account sec‐
tion below.)

• Finally, what are the fees? 1% of $10 million is a lot of money, and it is worth fighting
for lower fees. However, in general, the fees are fairly standard across gateways, and
you should first look for a gateway that will work with your business setup. As your
business grows in revenue and volume, it becomes very easy to negotiate lowering
your fees to the standard minimums in your industry.

342 | Chapter 15: Ecommerce

www.it-ebooks.info

http://easydigitaldownloads.com
http://www.it-ebooks.info/

Merchant Accounts
Merchant accounts are often confused with payment gateways, but are actually a sepa‐
rate thing you need to process payments on your website. Part of the confusion comes
from the fact that some gateways use their own merchant accounts.

In any case, both a payment gateway and merchant account are required to make money
online, and both kinds of providers will help you secure the other service. That is, you
can shop for a payment gateway and have it help you find a merchant account, or you
can shop for a merchant account and have it help you find a payment gateway. We find
that younger companies typically get better fees when they start with a payment gateway
and get a merchant account with their help, rather than going to their bank to open a
merchant account.

Here is how the credit card information and money flows from a customer on your
website into your checking account: WordPress → Ecommerce Plugin → Payment
Gateway → Merchant Account → Your Checking Account.

One way to think of the difference between gateways and merchant accounts is that the
payment gateway is largely technology related, and the merchant account is largely
business related.

The payment gateway provides the technology to validate and charge a credit card and
setup recurring payments, and some can store customer information for later billing.

The merchant account is a kind of bank account that stores incoming money until it
can be moved to your bank account. Why not just put the money directly into your
bank account? The delay is kind of like waiting for a check to clear. If for some reason
the credit card company needs to request the money back, because of an error or a
customer request, it can pull it out of your merchant account.

These are the important things to look out for when choosing a merchant account:

• Will my gateway work with this merchant account?
• Will this merchant account underwrite my type of business? Some merchant ac‐

counts will not work with adult sites, gambling sites, or other “high-risk merchants.”
• Will this merchant account underwrite my size of business? Some merchant ac‐

counts will not approve new businesses that sell high-priced (thousands of dollars)
goods.

• Finally, what are the fees? Sometimes these fees are bundled into the payment gate‐
way fees, and sometimes they are separate.

The best route to accepting credit cards online is usually to choose a plugin first, then
choose a payment gateway that works with that plugin, and then work with the gateway
to find a merchant account.

Merchant Accounts | 343

www.it-ebooks.info

http://www.it-ebooks.info/

SSL Certificates and HTTPS
When accepting sensitive information through a web form, for example, a credit card
number, you should encrypt that information by loading and submitting the form over
SSL or HTTPS.

First some definitions: SSL stands for “Secure Sockets Layer” and is the technology that
encrypts data that is transferred to and from a web page. HTTP stands for “Hypertext
Transfer Protocol.” This is the standard protocol for serving web pages without encryp‐
tion. HTTPS stands for “HTTP Secure.” This is the protocol for serving web pages with
SSL encryption.

Installing an SSL Certificate on Your Server
First make sure that you have SSL enabled on your web server. How to do that will
depend on your specific host and web server. O’Reilly’s ONLamp has great instructions
for setting up SSL on a server running Apache.

When setting up SSL, you’ll need an SSL certificate. You can use self-signed certificates
for testing purposes, but modern-day browsers will show some fairly dire warnings
when browsing to a site using a self-signed certificate. Figure 15-1 shows the warning
shown to Chrome users.

For production environments, you’ll want to use a public key certificate from a certificate
authority or CA. Public key certificates must be purchased, and are usually bundled or
offered as an add-on to your web hosting package. You can also use public key certificates
(SSL certificates) purchased from third parties; visit this book’s website for a list of
vendors we like. A good CA certificate will be trusted by all modern web browsers, which
is what gives you the green or golden padlock icon on your website instead of a broken
or red padlock.

What you’re really doing is paying for the confirmation that you really own the domain
you are using the certificate on. Ownership of the domain is usually confirmed via email
to an address on the domain.

Internet consumers are trained to look for that padlock (see Figure 15-2). Both savvy
and nonsavvy users will feel better seeing it. So even if you aren’t accepting credit card
information directly on your page (e.g., if you are sending users to PayPal to pay), it’s
still a good idea to purchase a CA certificate and serve your checkout page over SSL.

Besides using a CA certificate, the other thing to do when setting up SSL is to have your
HTTPS directory point to your HTTP directory through a symbolic link, or symlink
for short. A symlink is like a shortcut in a Windows PC. The symlink points to another
directory rather than being a directory of its own.

344 | Chapter 15: Ecommerce

www.it-ebooks.info

http://bit.ly/config-ssl-apache
http://bit.ly/config-ssl-apache
http://bwawwp.com/ssl/
http://www.it-ebooks.info/

Figure 15-1. Chrome SSL warning

The end result of using a symlink for your HTTPS directory is that the same .php source
files will be loaded when people visit https://yoursite.com as when they visit http://your‐
site.com. Your server will make sure that the traffic through the HTTPS link is encrypted
and both WordPress and your ecommerce plugin will make sure that the correct secure
page is shown to the user when being served over SSL.

Assuming your HTTP directory is called “html” and you want your HTTPS directory
to be called “ssl_html,” you would issue the following Linux command to create a sym‐
link to that directory: ln -s http ssl_http.

Next you’ll need to tell your ecommerce plugin to use SSL on your checkout page.

SSL Certificates and HTTPS | 345

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-2. Various padlocks across browsers

SSL with Paid Memberships Pro
Figure 15-3 shows the Payment Settings tab of the Membership settings in your Word‐
Press dashboard.

Figure 15-3. Paid Memberships Pro payment settings

To get Paid Memberships Pro to serve your checkout page over SSL, set the Force SSL
option to Yes. Depending on which payment gateway you are using, this option will

346 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

either be forced to Yes or will give you the option to choose Yes or No. Set to Yes and
click the Save Settings button.

When this setting is enabled, a user browsing to the HTTP version of the page will be
redirected to the HTTPS version of the page. Conversely, users browsing to an HTTPS
version of a noncheckout page will be redirected to the HTTP version.

SSL with Jigoshop
To get Jigoshop to serve your checkout page over HTTPS, go to Jigoshop → Settings in
your WordPress dashboard, click the General tab, then check the “Force SSL on check‐
out” option (Figure 15-4) and click the Save General Changes button.

Figure 15-4. Jigoshop “Force SSL on checkout” option

Other ecommerce plugins will have similar settings.

WordPress Login and WordPress Admin over SSL
Serving your checkout page over SSL is the minimum you can do to secure the private
data passed to and from your site. You can also set up WordPress to use SSL on the login
page, in the admin dashboard, across the entire site, or only on select pages.

SSL Certificates and HTTPS | 347

www.it-ebooks.info

http://www.it-ebooks.info/

SSL logins in WordPress are done by setting the FORCE_SSL_LOGIN constant to true in
your wp-config.php file. Place the following line of code above the “That’s all, stop ed‐
iting! Happy blogging.” comment at the end of the file:

define('FORCE_SSL_LOGIN', true);

To use SSL on the login page and in the admin dashboard, use the following
FORCE_SSL_ADMIN constant instead:

define('FORCE_SSL_ADMIN', true);

The FORCE_SSL_ADMIN constant supersedes the FORCE_SSL_LOGIN
constant. You should only set one or the other constant to true. If
FORCE_SSL_LOGIN is false and FORCE_SSL_ADMIN is true, your login
page will still be served over SSL.

WordPress Frontend over SSL
You might think, “Why not serve my entire site over SSL?” The reason not to is that the
SSL encryption adds a small bit of CPU computation and a few microseconds to each
page load. This may not matter, but on larger sites at scale, it could add up.

There are occasions when you may need to use SSL across the entire frontend and
backend of your site. Maybe you don’t mind the extra bit of CPU use and just want to
set your members at ease. Maybe you have secure forms and information on many pages
in your frontend. In these cases, you can set the FORCE_SSL_ADMIN constant to true in
your wp-config.php file and then include this plugin:

<?php
/*
Plugin Name: Always HTTPS
Plugin URI: http://www.strangerstudios.com/wp/always-https
Description: Redirect all URLs to the HTTPS version.
Version: .1
Author: strangerstudios
*/

/*
 Make sure to set FORCE_SSL_ADMIN to true.
 Add the following to your wp-config.php:

define('FORCE_SSL_ADMIN', true);
*/

//redirect to https
function always_https_redirect()
{
 //if FORCE_SSL_ADMIN is true and we're not over HTTPS
 if(force_ssl_admin() && !is_ssl())

348 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

 {
 //redirect to https version of the page
 wp_redirect("https://" . $_SERVER['HTTP_HOST'] .
 $_SERVER['REQUEST_URI']);
 exit;
 }
}
add_action('wp', 'always_https_redirect', 2);

//(optional) Tell Paid Memberships Pro to get on board with the HTTPS redirect.
add_filter("pmpro_besecure", "__return_true");
?>

If FORCE_SSL_ADMIN is on, but the current page is not already being served over HTTPS,
the user is redirected to the HTTPS version of the page.

This code can cause an infinite redirect loop in a few situations. Sometimes plugins, like
Paid Memberships Pro, will have their own idea on which pages should and shouldn’t
be served over HTTPS. In the preceding code, we use a filter in Paid Memberships Pro
to tell it that all pages should be served over HTTPS. Other plugins should have similar
filters.

Another situation that comes up is that certain server setups, particularly those that are
using a proxy like the Varnish caching system (covered in Chapter 16), will fail to prop‐
erly set the $_SERVER['HTTPS'] global, which the is_ssl() function checks to see if
the current page is being served over HTTPS. These conflicts are harder to handle.
Sometimes, you can update your wp-config.php to set the $_SERVER['HTTPS'] global
based on some other global being set by the proxy. Or you can adjust the check in the
Always HTTPS plugin to check for the particular values set by your proxy.

We’re going to go through two more techniques, which we’ve bundled into the Paid
Memberships Pro plugin. We’ll show you how to use these features in Paid Memberships
Pro and also how to set them up yourself if you aren’t using the Paid Memberships Pro
plugin.

SSL on Select Pages
Sometimes you will want to serve only certain pages over SSL. Paid Memberships Pro
does this, where by default only the checkout page is served over SSL, and all other pages
are served over regular HTTP.

If you’re using the Paid Memberships Pro plugin, and there are other pages you’d like
to serve over SSL, you can add a custom field to the post, page, or CPT called “besecure”
and set the value to “1” or “true.” Paid Memberships Pro will then make sure that the
page is served over SSL.

SSL Certificates and HTTPS | 349

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s see how Paid Memberships Pro does this so you can understand what’s going on
and potentially use the same method for your site that isn’t running the Paid Member‐
ships Pro plugin.

The code in this section is similar to the code found in the Paid
Memberships Pro plugin, but is slightly altered for clarity.

To serve certain pages over SSL, we’ll need a few things:

• A way to detect if the user is on the login page, so we can respect the FORCE_SSL_LOG
IN or FORCE_SSL_ADMIN constants

• A way to set which pages should be served over SSL and a function to redirect pages
to either the HTTP or HTTPS version of a page depending on that setting

• A way to filter URLs used on a page to use the correct protocol (HTTP or HTTPS)

First up, our function to detect if the user is on the login page. This function checks if
we’re on the /wp-login.php or /wp-register.php pages or if the current page has the slug
“login”:

function my_is_login_page()
{
 return (in_array(
 $GLOBALS['pagenow'], array('wp-login.php', 'wp-register.php')) ||
 is_page("login")
);
}

WordPress sets the pagenow global to the filename of the PHP script loaded. Typically
this is index.php, but the login page will be accessed via wp-login.php.

Fresh installs of WordPress will not have a wp-register.php file, but
we’re still checking for it here. WordPress sites set up before version
3.4 included a wp-register.php file. A redirect from wp-register.php to
the actual registration page at wp-login.php?action=register was add‐
ed in WP 3.4, but the old wp-register.php file wasn’t deleted if you
upgraded. Since it doesn’t hurt anything, we can check for wp-
register.php too just in case the WordPress site includes it.

The is_page() function can take a post ID or slug as a parameter and will return true
if the current page has that ID or slug. If you use a plugin like Theme My Login or a
similar method to place your login page within your theme on the frontend, you’ll have

350 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

a WordPress page for your login page. Tweak the code to check for whatever you set the
slug to on your login page.

Next up is a function to redirect the user to the correct version of a page (HTTP or
HTTPS), depending on if the page is set to be served over SSL or not:

function my_besecure()
{
 global $besecure, $post;

 //check the post meta for a besecure custom field
 if(!empty($post->ID) && !$besecure)
 $besecure = get_post_meta($post->ID, "besecure", true);

 //if forcing ssl on admin, be secure in admin and login page
 if(!$besecure && force_ssl_admin() && (is_admin() || my_is_login_page()))
 $besecure = true;

 //if forcing ssl on login, be secure on the login page
 if(!$besecure && force_ssl_login() && my_is_login_page())
 $besecure = true;

 //a hook so we can filter this setting if need be
 $besecure = apply_filters("my_besecure", $besecure);

 if($besecure && (!is_ssl())
 {
 //need to be secure
 wp_redirect("https://" . $_SERVER['HTTP_HOST'] . $_SERVER['REQUEST_URI']);
 exit;
 }
 elseif(!$besecure && is_ssl())
 {
 //don't need to be secure
 wp_redirect("http://" . $_SERVER['HTTP_HOST'] . $_SERVER['REQUEST_URI']);
 exit;
 }
}
add_action('wp', 'my_besecure', 2);
add_action('login_init', 'my_besecure', 2);

Stepping through the preceding code, first we check for a “besecure” custom field in the
current post’s post meta. If this custom field is set, we’ll want to serve over SSL.

Then we check if we’re on the login page and if either the FORCE_SSL_LOGIN or
FORCE_SSL_ADMIN constant is set to true. If so, we’ll want to serve over SSL.

We add a hook in there to allow other code throughout our application to override the
$besecure variable at this point.

SSL Certificates and HTTPS | 351

www.it-ebooks.info

http://www.it-ebooks.info/

Then we figure out if we need to redirect. We’re using WP’s built-in is_ssl() func‐
tion, which will return true if $_SERVER['HTTPS'] is turned on or if $_SERVER['SER
VER_PORT'] is set to 443 (the typical port number for SSL).

As explained above, some server setups with proxies may not prop‐
erly set the $_SERVER globals. You can add a check to your wp-
config.php for the value they do set and set $_SERVER['HTTPS'] to
true if you are over HTTPS.

If $besecure is true, but we’re not serving over SSL, we redirect the browser to the
HTTPS version of the page.

Similarly, if $besecure is false, but we are serving over HTTPS, we redirect the browser
to the HTTP version of the page.

We’re rebuilding the current URL by appending the appropriate protocol to the $_SERV
ER['HTTP_HOST'] and $_SERVER['REQUEST_URI'] globals set up by PHP.

The two lines at the bottom of the previous code block set up this function to fire during
the wp and login_init events in WordPress. The wp hook is activated on the frontend
of WordPress after loading the theme, but before generating any output. The login_in
it hook is found in the wp-login.php file. We’re setting the priority to 2 here so this will
fire before any actions set up using the default priority (10), but after any action that
may be set up with a priority 1 or lower. You may need to tweak this depending on the
other plugins and custom code you are running using these hooks.

Finally, we’re going to write a quick little function to filter URLs generated by WordPress
to use the same protocol as the current page. Remember earlier we talked about how
URLs like http://yoursite.com/some-page/ (HTTP) that show up on a page like https://
yoursite.com/checkout/ (HTTPS) will cause your browser to show a security warning:

function my_https_filter($s)
{
 global $besecure;
 if($besecure)
 return str_replace("http:", "https:", $s);
 else
 return str_replace("https:", "http:", $s);
}
add_filter('bloginfo_url', 'my_https_filter');
add_filter('wp_list_pages', 'my_https_filter');
add_filter('option_home', 'my_https_filter');
add_filter('option_siteurl', 'my_https_filter');
add_filter('logout_url', 'my_https_filter');
add_filter('login_url', 'my_https_filter');
add_filter('home_url', 'my_https_filter');

352 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

Since we saved $besecure to a global variable in the my_besecure() function, we don’t
need to recalculate it. Then we use the str_replace function to swap “http:” for “https:”
or vice versa. We set this filter to run on a number of built in WordPress hooks used at
various places throughout the WordPress code base where URLs are generated.

When you output URLs in other places of your custom application code, be sure to use
the home_url() function to make sure the URL is generated correctly and the
my_https_filter is run on it.

Avoiding SSL Errors with the “Nuclear Option”
The my_https_filter function will make sure links that show up on a page use the
correct protocol. However, sometimes raw http://… URLs may be hardcoded into your
posts, or maybe a plugin you use doesn’t use the built-in WordPress functions like it
should when outputting same site URLs or loading JavaScript or CSS files. Figure 15-5
shows the Chrome Developer Tools Console, which can help locate errors.

Figure 15-5. An SSL error in the Chrome Developer Tools Console. Use the Chrome De‐
veloper Tools Console to find SSL errors, or use the Nuclear Option to avoid them.

SSL Certificates and HTTPS | 353

www.it-ebooks.info

http://www.it-ebooks.info/

In these cases, you can try to find each case of a bad URL and fix the link in your posts
or code to use a relative URL or the proper WordPress function to make sure it will
output on the frontend using the proper protocol. However, it’s sometimes easier to use
what we call the Nuclear Option:

constant('MY_SITE_DOMAIN', 'yoursite.com');

function my_NuclearHTTPS()
{
 ob_start("my_replaceURLsInBuffer");
}
add_action("init", "my_NuclearHTTPS");

function my_replaceURLsInBuffer($buffer)
{
 global $besecure;

 //only swap URLs if this page is secure
 if($besecure)
 {
/*
okay swap out all links like these:
* http://yoursite.com
* http://anysubdomain.yoursite.com
* http://any.number.of.sub.domains.yoursite.com
*/
$buffer = preg_replace(
 '/http\:\/\/([a-zA-Z0-9\.\-]*'.str_replace('.','\.',MY_SITE_DOMAIN).')/i',
 'https://$1',
$buffer
);
 }

 return $buffer;
}

First we need to make sure we define a constant MY_SITE_DOMAIN and set it to the second-
level domain (SLD) for your site. Your site_url() set in WordPress may be www.your‐
site.com, but we are interested here in just the yoursite.com part of that.

Then my_NuclearHTTPS() fires on the init hook and uses the PHP function
ob_start() to turn on output buffering. Output buffering means that all output gen‐
erated by PHP (e.g., via echo function calls or inline HTML) goes into a buffer string
instead of straight to the browser. Then, when PHP is finished generating all output (or
if you call the ob_end_flush() function first), the buffer string is passed to a callback
function, which is my_replaceURLsInBuffer() in this case.

The my_replaceURLsInBuffer() function filters the buffer string, swapping out “http:”
for “https:” on every link. The regular expression magic we’re doing in the preg_re

354 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

place() call there makes sure that links to any subdomain using the same domain (why
we needed to set the MY_SITE_DOMAIN constant) will also be filtered.

So you might have caught on by now why we call this the “Nuclear Option.” Instead of
finding the source of bad URLs in your app and fixing them, we just fix all of the URLs
at once before sending the output to the browser. There will be a small performance hit
here, depending on how large your HTML output is. But this method can be useful in
a pinch, especially if you are using many third-party plugins that you can’t or don’t want
to fix to output site URLs properly.

Setting Up Software as a Service (SaaS) with Paid
Memberships Pro
The model of charging for access to a web app is called software as a service, or SaaS
(pronounced “sass”) for short.

In this section, we will go through setting up Paid Memberships Pro on our SchoolPress
app, with a $10/month membership.

The Software as a Service Model
The software as a service model (of SaaS) basically means that instead of purchasing
your software in a shrink-wrapped box and installing it on your computer, you pay—
typically a monthly or annual fee—for access to a cloud-enabled web app.

Examples of companies using the SaaS model are GitHub, Dropbox, Evernote, and
Google Apps, and now even Microsoft Office can be purchased under a SaaS plan.

SaaS is popular because it generates relatively predictable recurring revenue. But SaaS
is also an important way to make money off of open source software like WordPress.
Because WordPress is GPL, if you were to sell and distribute the code for your software,
your customers would be entitled under the GPL to redistribute that code…potentially
for free. So using the SaaS service model allows your customers to use your software
without having to distribute your source code to them.

The following instructions will help you if you want to charge a one-time, monthly, or
annual fee for access to your app.

Step 0: Figure Out How You Want to Charge for Your App
Is it a lifetime fee, or a monthly subscription? Is it an annual subscription? Does the
subscription automatically bill every year, or does the customer have to renew?

Setting Up Software as a Service (SaaS) with Paid Memberships Pro | 355

www.it-ebooks.info

http://www.it-ebooks.info/

These are questions you will want to answer as best as you can before you start inte‐
grating Paid Memberships Pro or coding up customizations. Jason has a good series for
how to price your web apps and premium content sites.

For our SchoolPress app, we will be charging each school account a $1,000 annual fee.
When a school signs up, we will create a WordPress network site for it (e.g., my‐
school.schoolpress.com) and give it admin access to that site so it can start adding teachers
and other content.

We will set the membership level to automatically bill the schools each year.

Step 1: Installing and Activating Paid Memberships Pro
Paid Memberships Pro is available in the WordPress plugin repository, which makes
installing and activating the plugin a breeze (Figure 15-6).

Figure 15-6. Add new plugin

1. From your WordPress dashboard, go to Plugins → Add New.
2. Search for Paid Memberships Pro.
3. Find Paid Memberships Pro and click the Install link.

356 | Chapter 15: Ecommerce

www.it-ebooks.info

http://bit.ly/pmp-pricing
http://www.it-ebooks.info/

4. Optionally enter your FTP information here. (Some hosting setups will not require
this.)

5. When the plugin installs successfully, click the Activate link.

Step 2: Setting Up the Level
1. From your WordPress dashboard, go to the newly created Memberships page.
2. Click the “Add new level” link or button.
3. Enter the membership information in the boxes, as shown in Figure 15-7. For our

level, that will be:
a. Name:
b. Description: School administrators should sign up here to create and gain access

to your SchoolPress site.
c. Confirmation Message: (can leave it blank)
d. Initial Payment: 1000
e. Recurring Subscription: Checked

i. Billing Amount: 1000
ii. Per: 1

iii. Days/Weeks/Years: Years
iv. Billing Cycle Limit: 0
v. Custom Trial: Unchecked

f. Disable New Signups: Unchecked
g. Membership Expiration: Unchecked
h. Categories: All Unchecked

4. Click Save Level.

The Software as a Service Model | 357

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-7. Paid Memberships Pro New Level screen

358 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

Step 3: Setting Up Pages
Paid Memberships Pro needs several pages to facilitate checkout and other member-
related functions. When you click on the “Page” tab of the PMPro settings, you will see
a form like the one shown in Figure 15-8.

Figure 15-8. Generate pages for Paid Memberships Pro

If you already have pages dedicated to describing your levels or for a user account, you
can choose those pages through the dropdowns on the Pages tab of the Paid Member‐
ships Pro settings. In most cases though, you will just want to click the “click here to let
us generate them for you” link and pages will be created for the Account, Billing Infor‐
mation, Cancel, Checkout, Confirmation, Invoice, and Levels pages. Figure 15-9 shows
what this page looks like once the script has generated these pages for you.

The Software as a Service Model | 359

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-9. Default pages generated by Paid Memberships Pro

Step 4: Payment Settings
Figure 15-10 shows the Payment Gateway & SSL tab of the PMPro settings. Here you
will choose your gateway and then fill out of corresponding user and/or API values.
Depending on which gateway option you choose, this page will also allow you to change
the currency used, which credit cards are available, whether to use SSL or not (remember
you should always install SSL unless it is a test site), and whether to use the Nuclear
Option for SSL or not.

360 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-10. Paid Memberships Pro payment settings

The payment settings page will also give you a place to paste in your SSL Seal Code and
enter a tax state and percentage. The tax calculation can also be done programmatically
through the pmpro_tax filter (described below).

The payment settings page will also show you the URL you should share with your
gateway to enable behind-the-scenes communication from the gateway to your site.
This function has various names depending on the gateway: PayPal calls it an “IPN
handler”; Authorize.net calls it a “silent post URL”; and Stripe and Braintree will call it
a “webhook.”

Step 5: Email Settings
By default, WordPress will send emails from your site from “WordPress” at word‐
press@yoursite.com. This doesn’t look nice and is often not a real email address. The
Email tab of the Paid Memberships Pro settings, shown below in Figure 15-11, allows
you to override these values and also check or uncheck which membership-related
admin emails you would like to receive.

The Software as a Service Model | 361

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-11. Paid Memberships Pro email settings

Step 6: Advanced Settings
Figure 15-12 shows the Advanced Settings tab, which has a few built-in options for
running Paid Memberships Pro. Of particular interest may be the option to choose a
Terms of Service page to show users on sign up. They will see a scrollable text box with
the TOS page content shown within it and will have to check a box to agree to the Terms
of Service.

362 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-12. Paid Memberships Pro advanced settings

Step 7: Locking Down Pages
Besides generating a checkout page and integrating with your payment gateway, the
main functionality added by Paid Memberships Pro is the ability to lock down certain
pages or portions of pages based on a user’s membership level. There are a few different
ways to do this.

Lock down a specific page
Paid Memberships Pro adds a Require Membership box to the sidebar of the edit post
and edit page pages in the WordPress dashboard. An example of the Require Member‐
ship box is shown in Figure 15-13. To lock down a page for a certain membership level,
check the box next to that level.

If more than one level is checked, members of either level will be able to view that page.
If no levels are checked, anyone (including nonusers) will be able to view that page.

The Software as a Service Model | 363

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-13. Check which levels are required to view this page

Lock down a page by URL
Sometimes it may be easier to restrict access to a page or group of pages by checking
the page’s URL. For example, to keep nonmembers out of certain BuddyPress groups,
you could add the following code to a custom plugin:

//lock down our members group
function my_buddy_press_members_group()
{
 $uri = $_SERVER['REQUEST_URI'];
 if(strtolower(substr($uri, 0, 16)) == "/groups/members/")
 {
 //make sure they are a member
 if(!pmpro_hasMembershipLevel())
 {
 wp_redirect(pmpro_url("levels"));
 exit;
 }
 }
}
add_action("init", "my_buddy_press_members_group");

The workhorse here is the pmpro_hasMembershipLevel() function. This function can
take two parameters. The first is the ID or name of a membership level to check for. The
second parameter is the user ID of the user you want to check. If no parameters are set,
the function will check if the current user has any membership level.

You can also do negative checks by passing, for example, “-1” as the level ID.
pmpro_hasMembershipLevel(-1) will return true if the current user doesn’t have level
1. If you pass a zero specifically, the function will check that the user has no level at all.
So pmpro_hasMembershipLevel(0) will return true if the current user does not have a
membership level. (You could also do !pmpro_hasMembershipLevel().)

Multiple level IDs and names can be passed in an array. For example, to check for
members with level 1 or 2, use this code:

if(pmpro_hasMembershipLevel(array(1,2)))
{

364 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

 //do something for level 1 and 2 members here
}

Lock down a portion of a page by shortcode
Another way to restrict access to content is to use shortcodes in your post body content.
The following is an example of some page content that will show different messages to
different membership levels:

Welcome to SchoolPress!

[membership level="1"]Thanks for your continuing membership.[/membership]

[membership level="-1"]Sign up your school now![/membership]

The [membership] shortcode is fairly simple. It takes one parameter level that, similar
to the parameter for the pmpro_hasMembershipLevel() function, can take a level ID,
name, or a zero or negative level ID. Any content within the shortcode will be shown
based on the stated level. Multiple level IDs can be passed separated by commas.

Lock down a portion of a page by PHP code using the pmpro_hasMembershipLevel() function

When locking down the BuddyPress members group, we used the pmpro_hasMember
shipLevel() function. You can also use this function within your page templates or
other code to restrict access to content or portions of code. For example, you might find
code like this in your header:

<?php if(is_user_logged_in()) { ?>
<div class="user-welcome">
 Welcome
 <?php if(function_exists("pmpro_hasMembershipLevel")
 && pmpro_hasMembershipLevel()) { ?>
 <a href="<?php echo pmpro_url("account"); ?>">
 <?php echo $current_user->display_name;?>

 <?php } else { ?>
 <a href="<?php echo home_url("/wp-admin/profile.php"); ?>">
 <?php echo $current_user->display_name;?>

 <?php } ?>
</div> <!-- end user-welcome -->
<?php } ?>

The preceding code will show members a link to the PMPro account page. Users without
a membership level are shown a link to their WP profile page.

Step 8: Customizing Paid Memberships Pro
Below are a few common customizations for Paid Memberships Pro. The general pro‐
cess for customizing a plugin like Paid Memberships Pro is to:

The Software as a Service Model | 365

www.it-ebooks.info

http://www.it-ebooks.info/

1. Figure out what you want to change.
2. Find out where the default behavior for your change is coded.
3. Locate or add a hook to support the customization you want.
4. Write an action or filter to use the hook.

Restricting nonmembers to the homepage
By default, Paid Memberships Pro does not lock down any part of your site unless you
specifically tell it to. For some sites, you will want very limited public access (just the
sales, about, and contact pages). You can do this by redirecting nonmembers away from
any nonapproved page. Use the following code:

function my_template_redirect()
{
 $okay_pages = array(
 pmpro_getOption('billing_page_id'),
 pmpro_getOption('account_page_id'),
 pmpro_getOption('levels_page_id'),
 pmpro_getOption('checkout_page_id'),
 pmpro_getOption('confirmation_page_id')
);

 //if the user doesn't have a membership, send them home
 if(!is_user_logged_in()
 && !is_home()
 && !is_page($okay_pages)
 && !strpos($_SERVER['REQUEST_URI'], "login"))
 {
 wp_redirect(home_url('wp-login.php?redirect_to='.
 urlencode($_SERVER['REQUEST_URI'])));
 }
 elseif(is_page()
 && !is_home()
 && !is_page($okay_pages)
 && !pmpro_hasMembershipLevel()
 {
 wp_redirect(home_url());
 }
}
add_action('template_redirect', 'my_template_redirect');

In the preceding code, we set up an array of post IDs for pages that nonmembers should
be able to see. We use the pmpro_getOption() function to get the IDs of the pages
generated by PMPro and also allow access to the home page by using the WordPress
is_home() function. We also allow access to any page with the word “login” in the URL,
which on our setup will just the login page.

366 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

Locking down files
Some of the pages you are locking down may have images or other files attached to
them. If the page is locked down, the link or image will not show up on the site for your
users. However, users who know the direct URL to the file will be able to download to
the file without first being logged in as a member.

This is because when Apache processes a URL like http://schoolpress.me/wp-content/
uploads/logo.png, it serves the file directly to the user without checking with PHP or
WordPress first.

You can change this behavior by adding a rule to your site’s .htaccess file that will redirect
any URL like the preceding one through a special script bundled with Paid Memberships
Pro. Add the following code to the top of your .htaccess file, above the other rewrite
rules:

RewriteEngine On
RewriteBase /
RewriteRule ^wp-content/uploads/(.*)$ \
 /wp-content/plugins/paid-memberships-pro/services/getfile.php [L]

How does this work? In WordPress, images and files can be uploaded to a post or page.
These files, called attachments by WordPress, are all stored in the /wp-content/
uploads/ folder, but they are also associated with the post they were attached to via an
entry in the wp_posts table.

Attachments are stored in the wp_posts table with the post_status set to “attachment”
and the post_parent set to the ID of the post they are attached to.

The getfile.php script will find the corresponding entry in the wp_posts table for the
requested file; and if the attachment’s parent requires membership, it will check to make
sure a valid member is logged in before serving the file.

Change user roles based on membership levels
For most of the examples in this section, we assume that members only have access to
the frontend application of your site. However, sometimes you may want to give mem‐
bers access to the WordPress dashboard, give them the “author” role so they can post
to the blog, or otherwise assign a role other than “subscriber” to them.

This code will add the author role to any new member of a particular level. It will also
downgrade the member to a subscriber role if her membership level is removed:

function my_pmpro_after_change_membership_level($level_id, $user_id)
{
 if($level_id == 1)
 {
 //New member of level #1.
 //If they are a subscriber, make them an author.
 $wp_user_object = new WP_User($user_id);

The Software as a Service Model | 367

www.it-ebooks.info

http://www.it-ebooks.info/

 if(in_array("subscriber", $wp_user_object->roles))
 $wp_user_object->set_role('author');
 }
 else
 {
 //Not a member of level #1.
 //If they are an author, make them a subscriber.
 $wp_user_object = new WP_User($user_id);
 if(in_array("author", $wp_user_object->roles))
 $wp_user_object->set_role('subscriber');
 }
}
add_action(
 "pmpro_after_change_membership_level",
 "my_pmpro_after_change_membership_level",
 10,
 2
);

More information on users and roles is in Chapter 6.

International and long-form addresses
By default, the Paid Memberships Pro checkout form will show address fields with the
city, state, and zip code formatted on one line and the country hidden and assumed to
be “US.” The default Paid Memberships Pro billing address form is shown in
Figure 15-14.

Figure 15-14. Paid Memberships Pro billing address

If you anticipate international users, you will want to show a long-form address with a
dropdown to select your country. This is done with the following code:

368 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

add_filter("pmpro_international_addresses", "__return_true");
add_filter("pmpro_longform_address", "__return_true");

That’s it, two lines. The pmpro_international_addresses hook/setting will show a
country dropdown if true. The pmpro_longform_address hook/setting will show each
address field on its own line if true.

Figure 15-15 shows the updated billing address fields.

Figure 15-15. Paid Memberships Pro international billing address

You may also want to change the default country, change the list of countries, or make
some of the address fields not required. Here is some example code doing that:

/*
 Change the Default Country from US to GB (Great Britain)
*/
function my_pmpro_default_country($default)
{
 return "GB";
}
add_filter("pmpro_default_country", "my_pmpro_default_country");

/*
 Add/remove some countries from the default list.
*/
function my_pmpro_countries($countries)

The Software as a Service Model | 369

www.it-ebooks.info

http://www.it-ebooks.info/

{
 //remove the US
 unset($countries["US"]);

 //add The Moon (LN short for Lunar?)
 $countries["LN"] = "The Moon";

 //You could also rebuild the array from scratch.
 //$countries = array("CA" => "Canada", "US" => "United States",
 // "GB" => "United Kingdom");

 return $countries;
}
add_filter("pmpro_countries", "my_pmpro_countries");

/*
 (optional) You may want to add/remove certain countries from the list.
 The pmpro_countries filter allows you to do this.
 The array is formatted like
 array("US"=>"United States", "GB"=>"United Kingdom");
 with the acronym as the key and the full
 country name as the value.
*/
function my_pmpro_countries($countries)
{
 //remove the US
 unset($countries["US"]);

 //add The Moon (LN short for Lunar?)
 $countries["LN"] = "The Moon";

 //You could also rebuild the array from scratch.
 //$countries = array("CA" => "Canada", "US" => "United States",
 // "GB" => "United Kingdom");

 return $countries;
}
add_filter("pmpro_countries", "my_pmpro_countries");

/*
 Change some of the billing fields to be not required.
 Default fields are: bfirstname, blastname, baddress1, bcity, bstate,
 bzipcode, bphone, bemail, bcountry, CardType, AccountNumber,
 ExpirationMonth, ExpirationYear, CVV
*/
function my_pmpro_required_billing_fields($fields)
{
 //remove state and zip
 unset($fields['bstate']);
 unset($fields['bzipcode']);

 return $fields;

370 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

}
add_filter("pmpro_required_billing_fields", "my_pmpro_required_billing_fields");

Upgrade/downgrade pricing
By default, when an existing member checks out for a new membership level, the mem‐
ber’s old level is cancelled immediately and he’s charged full price for the new mem‐
bership level starting on the day he is checking out.

This works for some setups, but sometimes you might want to either (1) keep your
member’s payment date the same or (2) give him some credit from his old membership
level toward his new membership level. In other words, you want to prorate his payment.

You can do the math in many different ways, but the following code will show the idea
behind overriding the subscription start date and the checkout price based on factors
like old membership level:

/*
 Calculate the prorated membership cost.
*/
function my_pmpro_checkout_level($level)
{
 //does the user have a level already?
 if(pmpro_hasMembershipLevel())
 {
 //get current level
 global $current_user;
 $clevel = $current_user->membership_level;

 //get the difference in amount
 $diff = $level->billing_amount - $clevel->billing_amount;

 //only prorate if the difference is positive (upgrading)
 if($diff > 0)
 {
 //what day is it?
 $now = time();
 $today = intval(date("j", $now));

 //get their payment date
 $morder = new MemberOrder();
 $morder->getLastMemberOrder();

 $payment_day = intval(date("j", $morder->timestamp));

 //how many days in that month?
 //either 1 for months with 31 days or -2 for Feb
 $days_in_month = date("t", $morder->timestamp);
 $extra_days = $days_in_month - 30;

 //how many days are left in this payment period?
 $days_left = $payment_day - $today + $extra_days;

The Software as a Service Model | 371

www.it-ebooks.info

http://www.it-ebooks.info/

 //if negative, we need to "flip it"
 if($days_left < 0) $days_left = 30 + $days_left;

 //as a % (decimal)
 $per_left = $days_left / $days_in_month;

 //how many days have passed
 $days_passed = $days_in_month - $days_left;

 //as a % (decimal)
 $per_passed = $days_passed / $days_in_month;

 /*
 Now figure out how to adjust the price.
 (a) What they should pay for new level
 = $level->billing_amount * $per_left.
 (b) What they should have paid for current level
 = $clevel->billing_amount * $per_passed.
 What they need to pay = (a) + (b) - (already paid)
 */
 $new_level_cost = $level->billing_amount * $per_left;
 $old_level_cost = $clevel->billing_amount * $per_passed;

 $level->initial_payment = round($new_level_cost +
 $old_level_cost - $morder->total, 2);

 //just in case we have a negative payment
 if($level->initial_payment < 0)
 $level->initial_payment = 0;
 }
 else
 {
 //let's just zero out the initial payment for
 //downgrades or you could figure out how to do a credit
 $level->initial_payment = 0;
 }
 }

 return $level;
}
add_filter("pmpro_checkout_level", "my_pmpro_checkout_level");

/*
 If you have an old membership level, keep your startdate.
*/
function my_pmpro_checkout_start_date_keep_startdate($startdate, $user_id,
 $level)
{
 if(pmpro_hasMembershipLevel())
 {
 global $wpdb;

372 | Chapter 15: Ecommerce

www.it-ebooks.info

http://www.it-ebooks.info/

 $sqlQuery = "SELECT startdate FROM $wpdb->pmpro_memberships_users
 WHERE user_id = '" . $wpdb->escape($user_id) . "'
 AND membership_id = '" . $wpdb->escape($level->id) . "'
 AND status = 'active'
 ORDER BY id DESC
 LIMIT 1";
 $old_startdate = $wpdb->get_var($sqlQuery);

 if(!empty($old_startdate))
 $startdate = "'" . $old_startdate . "'";
 }

 return $startdate;
}
//remove the default PMPro filter
remove_filter("pmpro_checkout_start_date",
 "pmpro_checkout_start_date_keep_startdate", 10, 3);

//our filter works with ANY level
add_filter("pmpro_checkout_start_date",
 "my_pmpro_checkout_start_date_keep_startdate", 10, 3);

The integration with Paid Memberships Pro here is pretty straightforward. We are fil‐
tering the initial (first month) cost of a membership level using the pmpro_check
out_level filter. We also filter the subscription start date (or payment date) using
the pmpro_checkout_start_date filter.

In both cases, we check if the user checking out already has a membership, meaning
this is an upgrade or downgrade.

The rest of the code is simply math to figure out what percentage of a payment period
has passed or what the user’s next payment date was going to be.

The Software as a Service Model | 373

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

WordPress Optimization and Scaling

This chapter is all about squeezing the most performance possible out of WordPress
through optimal server configuration, caching, and clever programming.

WordPress often gets knocked for not scaling as well as other PHP frameworks or other
programming languages. The idea that WordPress doesn’t work at scale mostly comes
from the fact that WordPress has traditionally been used to run small blogs on shared
hosting accounts. Decisions are made by the WordPress core team (including support‐
ing deprecated functionality and older versions of PHP and MySQL) to make sure that
WordPress will boot up easily on as many hosting setups as possible, including under-
powered shared hosting accounts.

So there are a lot of really slow WordPress sites out in the wild that help to give the
impression that WordPress itself is slow. However, WordPress is pretty darn fast on the
right setup and can be scaled using the same techniques any PHP/MySQL-based app can
use. We will cover many of those techniques in this chapter, introducing you to a number
of tools and concepts that can be applied to your own WordPress apps.

Terms
In this chapter, and throughout this book, we’ll throw around terms like “optimization”
and “scaling.” It’s important to understand exactly what we mean by these terms.

Optimization generally refers to getting your app and scripts to run as fast as possible.
In some cases, we will be optimizing for memory use or something other than speed.
But for the most part, when we say “optimize,” we are talking about making things fast.

Scaling means building an app that can handle more stuff. More page views. More visits.
More users. More posts. More files. More subsites. More computations.

Scaling can also mean building an app to handle bigger stuff. Bigger pages. Bigger posts.
Bigger files.

375

www.it-ebooks.info

http://www.it-ebooks.info/

The truth is that sometimes an app or specific parts of an app will run fine under light
use or when database tables are smaller, etc. But once the number of users and objects
being worked on gets larger in number or size, the performance of the app falls off or
locks up completely.

Scalability is a subjective measure of how well your code and application handles more
and bigger stuff. Generally, you want to build your app to handle the amount of growth
you expect and then some more just in case. On the other hand, you want to always
weigh the pros and cons of any platform or coding decision made for the sake of scal‐
ability. These decisions usually come at a cost, both in money and also in technical debt
or added complexity to your codebase. Also, some techniques that make handling many,
big transactions as fast as possible actually slow things down when working with fewer,
smaller transactions. So it’s always important to make sure that you are building your
app toward your real-world expectations and aren’t programing for scalability for the
sake of it.

Scaling and optimization are closely related because applications that are fast scale better.
There is more to scaling than having fast components, but fast components will make
scaling easier. And having a slow application can make scaling harder. For this reason,
it always makes sense to optimize your application from the inside out. In “The Truth
About WordPress Performance,” a great whitepaper by Copyblogger Media and W3
Edge, the authors refer to optimizing the “origin” versus optimizing the “edge.”

Origin refers to your WordPress application, which is the source of all of the data coming
out of your app. Optimizing the origin involves making your WordPress app and the
server it runs on faster.

Edge refers to services outside of your WordPress application, which are further from
the origin but potentially closer to your users. These services include content delivery
networks (CDNs) as well as things like browser caching. Optimizing the edge involves
using these services in a smart way to make the end user experience better.

Origin Versus Edge
Again, we advocate optimizing from the inside out, or from the origin to the edge.
Improvements in the core WordPress performance will always trickle through the edge
to the end user. On the other hand, performance increases based on outside services,
while improving the user experience, will sometimes hide bigger issues in the origin
that need to be addressed.

A typical example to illustrate this point is when a proxy server like Varnish (covered
in more detail later in this chapter) is used to speed up load times on a slowly loading
site. Varnish will make a copy of your fully rendered WordPress pages. If a visitor is
requests a page that is available in the Varnish cache, that copy is served to the visitor
rather than generating a new one through WordPress.

376 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/truth-wp-per
http://bit.ly/truth-wp-per
http://www.it-ebooks.info/

Serving flat files is much faster than running dynamic PHP code, and so Varnish can
greatly speed up a website. A page that takes 10 seconds to load on a slow WordPress
setup might load in 1 second using Varnish when a copy is fetched. However, 10-second
load times are unacceptable, and they are still going to happen. The first time each page
is loaded, it will take 10 seconds. Page loads in your admin dashboard are going to take
10 seconds. If a page copy is cleaned out of the Varnish cache for any reason, either
because it has been updated or because Varnish needed to make room, it’s going to take
10 seconds to load a fresh copy of that page.

Varnish and tools like it are great at what they do and can be a valuable part of your
application platform. At the same time, you want to make sure that these edge services
aren’t hiding issues in your origin.

Testing
For this chapter, part of our definition of performance will be tied to how fast certain
pages load in the web browser. We will use a few different tools to test page loads for a
single user and also for many simultaneous concurrent users.

For all of the tests in this chapter, we used a fresh install of WordPress, running the
Twenty Thirteen theme and no other plugins. The site was hosted on a dedicated server
running CENTOS 6 with the following specs:

• Intel® Xeon® E3-1220 processor
• 4 Cores x 3.1 GHz
• 12 GB DDR3 ECC RAM
• 2 TB SATA hard drives in software RAID

When not otherwise specified, the server was running a minimal setup with only
Apache, MySQL, and PHP installed.

What to Test
Before getting into how to test, let’s spend a little bit of time thinking about what to
test. The testing tools described below primarily work by pointing your browser or
another tool at a specific URL or a group of URLs for testing. But how do you choose
which URLs to test?

The easy answer is to test everything, but that’s not very helpful. As important as know‐
ing which pages to test is why those pages should be tested and what you are looking
for. So here are a few things to think about when testing your app’s pages for perfor‐
mance.

Testing | 377

www.it-ebooks.info

http://www.it-ebooks.info/

Test a “static” page to use as a benchmark
By static here, we don’t mean a static .html file. The page should be one generated
by WordPress, but choose one, like your “about” page or contact form, that has few
moving parts. The results for page load on your more static pages will represent a
sort of best-case scenario for how fast you can get pages to load on your app. If static
pages are loading slowly, fix that first before moving on to your more complicated
pages.

Test your pages with all outside page caches and accelerators turned off
You first want to make sure that your core WordPress app is running well before
testing your entire platform including CDNs, reverse proxies, and any other accel‐
erators you are using to speed up the end user experience. If you send 100 concur‐
rent connections a page with a full page cache setup, the first page load might take
10 seconds, then the following 99 may take 1 second. Your average load time will
be 1.09 seconds! However, as we discussed earlier that first 10-second load time is
really unacceptable and hints at larger problems with your setup.

Test your pages with all outside page caches and accelerators turned on
Turning off the outside accelerators will help you locate issues with your core app.
However, you want to run tests with the services on as well. This will help you locate
issues with those services. Sometimes they will slow down your app.

Test prototypical pages
Whichever kind of page your users are most likely to be interacting with are pages
you will want to test. If your app revolves around a custom post type, make sure
that the CPT pages perform well. If your app revolves around a search of some kind,
test the search form and search results pages.

Test atypical pages
While you should spend the most time focusing on the common uses of your app,
it is a good idea to test the atypical or longtail uses of your app as well, especially if
you have some reason to expect a performance issue there.

Test URLs in groups
Some of the following tools (like Siege and Blitz.io) allow you to specify a list of
URLs. By including a list of all of the different types of pages your users will interact
with, you get a better idea of what kind of traffic your site can handle. If you expect
(or know from analytics) that 80% of your site traffic is on static pages and 20% is
on your search pages, you can build a list of URLs with eight static pages and two
search results pages, which will simulate that same 80/20 split during testing. If the
test shows your site can handle 1,000 visitors per minute this way, it’s a pretty good
indication that your site will be able to handle 1,000 visitors in a real-world scenario.

378 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Test URLs by themselves
Testing URLs in groups will make the topline results more realistic, but it will make
tracking down certain performance issues harder. If your static pages load in under
1 second, but your search results pages load in 10 seconds, doing the 80/20 split test
described would result in an average load time of 2.8 seconds. However, the 10-
second load time on the search results page may be unacceptable. If you test a single
search result page or a group of similar search results pages, you’ll be better able to
diagnose and fix performance issues with the search functionality on your site.

Test your app from locations outside your web server
The command-line tools described below can be run from the same server serving
your website. It’s a good idea to run the tools from a different server outside that
network so you can get a more realistic idea of what your page loads are when
including network traffic to and from the server.

Test your app from inside your web server
It also makes sense to run performance tests from within your web server. This way
you remove any effect the outside network traffic will have on the numbers and can
better diagnose performance issues that are happening within your server.

Each preceding example has a good counterexample, which is another way of saying
you really do have to test everything page of your site under multiple conditions if you
want the best chances of finding any performance issues with your site. The important
part is to have an idea of what you are trying to test and to try as much as possible to
reduce outside influences on the one piece you are focusing on.

Chrome Debug Bar
The Google Chrome Debug Bar is a popular tool with web developers that can be used
to analyze and debug HTML, JavaScript, and CSS on websites. The Network tab also
allows you to view all requests to a website, their responses, and the time each request
took.

Similar tabs exist in the Firebug plugin for Firefox and in Internet Explorer’s Developers
Tools.

To test your site’s page load time using the Chrome Debug Bar:

1. Open Chrome.
2. Click the Chrome menu and go to Tools → Developer Tools.
3. Click the Network tab of the debug bar that shows in the bottom pane.
4. Navigate to the page you want to test.
5. You will get a report of all of the requests made to the server.

Testing | 379

www.it-ebooks.info

http://www.it-ebooks.info/

6. Scroll to the bottom to see the total number of requests and final page load time.

Figure 16-1 shows an example of the Chrome Debug Bar running on a website.

Figure 16-1. A shot of the Network tab of the Chrome Debug Bar

The final report will look something like the following:

19 requests | 35.7 KB transferred | 1.42 s (load: 1.16 s, DOMContentLoaded: 1.10 s)

This line is telling us the number of requests, the total amount of data transferred to
and from the server, the final load time, and also the amount of time it took to load the
DOM.

A DOMContentLoaded action is fired once all of the HTML of a given site has been loaded,
but before any images, JavaScript, or CSS may have finished loading. For this reason the
“DOMContentLoaded” time will be smaller than the total load time reported by the
debug bar.

The Chrome Debug Bar is a crude way to test load times. You have to do multiple loads
manually and keep track of the load times to get a good average. However, the debug
bar does give you useful information about individual file and script load times, which
can be used to find bottlenecks in your site images or scripts.

380 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

When testing page load times with the Google Chrome Debug Bar, the first time you
visit a web page will typically be much slower than subsequent loads. This is because
CSS, JavaScript, and images will be cached by the browser. Additional server-side cach‐
ing may also affect load times. Keep this in mind when testing load times. Unless you
are trying to test page loads with caching enabled, you may want to disable caching in
your browser and on the server.

You can also use the Audit tab of the Chrome Debug Bar (or the PageSpeed Tools by
Google) to get recommendations for how to make your website faster. Figure 16-2 shows
an example of the report generated by the Audit tab. This chapter will cover the main
tools and methods for carrying out the kinds of recommendations made by the Page‐
Speed audit.

Figure 16-2. The Audit tab of the Chrome Debug Bar

There is also a PageSpeed Server offered by Google that is in beta at
the time of this writing. In the future, this may be a useful tool for
speeding up websites through caching, but in our experience, the tool
is not flexible enough to work with complicated web apps (that can’t
simply cache everything). We recommend the other tools covered in
this chapter instead.

Testing | 381

www.it-ebooks.info

http://bit.ly/pagespeed-tool
http://bit.ly/pagespeed-tool
http://www.it-ebooks.info/

Apache Bench
Using your web browser, you can get an idea of load times for a single user under
whatever load your server happens to be under at the time of testing. To get an idea of
how well your server will respond under constant heavy load, you need to use a bench‐
marking tool like Apache Bench.

Despite the name, Apache Bench can be used to test other HTTP servers besides Apache.
What is basically does is spawn the specified number of dummy connections against a
website and records the average load times along with other information.

Installing Apache Bench
Apache Bench is available for all Linux distributions. On CENTOS and RedHat servers,
you can install it via the httpd-tools package. If you have the yum package manager
installed, you can use this command:

yum install httpd-tools

On Ubuntu servers, Apache Bench will be part of the apache2-utils package. If you have
apt-get installed, you can use this command:

apt-get install apache2-utils

Apache Bench is also available for Windows and should have been installed alongside
your Apache installation. Information on how to install and run Apache Bench on
Windows can be found in the Apache docs.

Running Apache Bench
The full list of parameters and options can be found in the man file or on the Apache
website. The command to run Apache Bench is ab, and a typical command will look
like this:

ab -n 1000 -c 100 http://yourdomain.com/index.php

The two main parameters for the ab command are n and c. n is the number of requests.
c is the number of concurrent requests to perform at one time. In the last example, 1,000
total requests will be made in batches of 100 simultaneous requests at a time.

If you leave off the trailing slash on your domain or don’t specify
a .php file to load, Apache Bench may fail with an error.

The output will look something like this (The report shows the results for 100 concurrent
requests against the homepage of a default WordPress install running on our test server).

382 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/apache-http
http://bit.ly/apacheparam
http://bit.ly/apacheparam
http://www.it-ebooks.info/

1. Pun intended.

#ab -n 1000 -c 100 http://yourdomain.com/index.php
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking yourdomain.com (be patient)

Server Software: Apache/2.2.15
Server Hostname: yourdomain.com
Server Port: 80

Document Path: /
Document Length: 251 bytes

Concurrency Level: 100
Time taken for tests: 8.167 seconds
Complete requests: 1000
Failed requests: 993
 (Connect: 0, Receive: 0, Length: 993, Exceptions: 0)
Write errors: 0
Non-2xx responses: 7
Total transferred: 9738397 bytes
HTML transferred: 9516683 bytes
Requests per second: 122.44 [#/sec] (mean)
Time per request: 816.740 [ms] (mean)
Time per request: 8.167 [ms] (mean, across all concurrent requests)
Transfer rate: 1164.40 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.4 0 2
Processing: 3 799 127.4 826 1164
Waiting: 2 714 113.7 729 1091
Total: 3 799 127.4 826 1164

Percentage of the requests served within a certain time (ms)
 50% 826
 66% 854
 75% 867
 80% 876
 90% 904
 95% 936
 98% 968
 99% 987
 100% 1164 (longest request)

The main stat to track here is the first “Time per request”. In the test, the mean is shown
as 816.740 milliseconds (ms) or about 0.817 seconds. What this number means 1 is that

Testing | 383

www.it-ebooks.info

http://www.it-ebooks.info/

when there are 100 people hitting the site at the same time, it takes about 0.817 seconds
for the server to originate the HTML for the home page

There is a second “Time per request” stat under the first labeled “mean, across all con‐
current requests.” This is simply the mean divided by the number of concurrent con‐
nections. In the example it shows 8.167 ms or about 1 hundredth of a second. It’s im‐
portant to realize that the second “Time per request” number is not the load time for a
single request. However, across multiple tests, this ratio (average request time / number
of concurrent requests) does give you an idea of how well your server handles larger
numbers of concurrent users. If the mean across concurrent requests stays the same as
you increase -c, it means that your server is scaling well. If it goes up drastically, it means
that your server is not scaling well.

Another important stat in this report is “requests per second.” This number sometimes
maps more directly to your load estimates. You can get real-life “requests per day” or
“requests per hour” numbers from your site stats and convert these to requests per
second and compare that to the numbers showing up in your reports and then tweak
the n and c inputs to match your desired conditions.

Testing with Apache Bench
There are a few tips that will help you when testing a website with Apache Bench.

First, run Apache Bench from somewhere other than the server you are testing since
Apache Bench itself will be using up resources required for your web server to run.
Running your benchmarks from outside locations will also give you a more realistic
idea of page generation times, including network transfer times.

On the other hand, running Apache Bench from the same server the site is hosted on
will take the network latency out of the equation and give you an idea of the performance
of your stack irrespective of the greater Internet.

Second, start with a small number of simultaneous connections and build up to larger
numbers. If you try to test 100,000 simultaneous connections right out the door, you
can fry your web server, your testing server, or both. Try 100 connections, then 200,
then 500, then 1,000, then more. Large errors or bottlenecks in your server and app
performance can come out with as few as 100 connections. Once you pass those tests,
try throwing more connections at the app.

Third, run multiple tests. There are a lot of factors that will affect the results of your
benchmarks. No two tests will be exactly the same, so try to run a few tests on different
pages of your site, at different times, under different conditions, and from different
servers and geographical locations. This will give you a more realistic results.

384 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

2. Run yum install gnuplot on CENTOS/Redhat systems. More information can be found at the gnuplot
homepage.

Graphing Apache Bench results with gnuplot

The -g parameter of Apache Bench can be used to specify an output file of the result
data in the gnuplot format. This data file can be fed into a gnuplot script to generate a
graph image.

You can also use the -e parameter to specify an output file in CSV
(Excel) format.

You can run the following commands to set up some space for your testing and save the
gnuplot data:

mkdir benchmarks
mkdir benchmarks/data
mkdir benchmarks/graphs
ab -n 5000 -c 200 -g benchmarks/data/testing.tsv “http://yourdomain.com/”

The summary report for this benchmark includes:

Requests per second: 95.00 [#/sec] (mean)
Time per request: 2105.187 [ms] (mean)

Then you’ll need to install gnuplot.2 Once installed, you can create a couple of gnuplot
scripts to generate your graphs. Here are a couple scripts modified from the examples
in a blog post by Brad Landers. Put these in your /benchmark/ folder.

This first graph will draw a line chart showing the distribution of load times. This chart
is good at showing how many of your requests loaded under certain times. You can save
this script as plot1.gp:

Let's output to a png file
set terminal png size 1024,768
This sets the aspect ratio of the graph
set size 1, 1
The file we'll write to
set output "graphs/sequence.png"
The graph title
set title "Benchmark testing"
Where to place the legend/key
set key left top
Draw gridlines oriented on the y axis
set grid y
Label the x-axis
set xlabel 'requests'

Testing | 385

www.it-ebooks.info

http://www.gnuplot.info/
http://www.gnuplot.info/
http://bit.ly/landersgnu
http://www.it-ebooks.info/

Label the y-axis
set ylabel "response time (ms)"
Tell gnuplot to use tabs as the delimiter instead of spaces (default)
set datafile separator '\t'
Plot the data
plot "data/testing.tsv" every ::2 using 5 title 'response time' with lines
exit

This second graph will draw a scatterplot showing the request times throughout the
tests. This chart is good at showing the distribution of load times throughout the tests.
You can save this script as plot2.gp.:

Let's output to a png file
set terminal png size 1024,768
This sets the aspect ratio of the graph
set size 1, 1
The file we'll write to
set output "graphs/timeseries.png"
The graph title
set title "Benchmark testing"
Where to place the legend/key
set key left top
Draw gridlines oriented on the y axis
set grid y
Specify that the x-series data is time data
set xdata time
Specify the *input* format of the time data
set timefmt "%s"
Specify the *output* format for the x-axis tick labels
set format x "%S"
Label the x-axis
set xlabel 'seconds'
Label the y-axis
set ylabel "response time (ms)"
Tell gnuplot to use tabs as the delimiter instead of spaces (default)
set datafile separator '\t'
Plot the data
plot "data/testing.tsv" every ::2 using 2:5 title 'response time' with points
exit

To turn your benchmark data into graphs then, run these commands:

cd benchmark
gnuplot plot1.gp
gnuplot plot2.gp

The resulting charts should look like Figure 16-3 and Figure 16-4.

386 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 16-3. The output of the plot1.gp gnuplot script

Seeing the data in graphical form can help a lot. For example, while the summary showed
a mean load time of 2,105 ms, the graphs above show us that a little over half of our
requests were processed in under 1 second, and the remaining requests took over 4.5
seconds.

You might think that a two-second load time is acceptable, but a four-second load time
is not. Based on the summary report, you’d think you were in the clear, when really
something like 30%+ of your users would be experiencing load times over four seconds.

Testing | 387

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 16-4. The output of the plot2.gp gnuplot script

Siege
Siege is a tool like Apache Benchmark that will hit your site with multiple simultaneous
connections and record response times. The report generated by Siege does a good job
of showing just the most interesting information.

Siege will need to be installed from source. You can get the latest source files at the Joe
Dog software site.

A sample Siege command will look like this:

siege -b -c100 -d20 -t2M http://yourdomain.com

The -b parameter tells Siege to run a benchmark. The -c100 parameter says to use 100
concurrent users. The -d20 parameter sets the average sleep time between page loads
for each user to 20 seconds. And the -t2M parameter says to run the benchmark for two
minutes. You can also use -t30S to set a time in seconds or -t1H to set a time in hours.

The output will look like this:

** Preparing 100 concurrent users for battle.
The server is now under siege...

388 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.joedog.org/siege-home/
http://www.joedog.org/siege-home/
http://www.it-ebooks.info/

Lifting the server siege... done.

Transactions: 1160 hits
Availability: 100.00 %
Elapsed time: 119.29 secs
Data transferred: 9.53 MB
Response time: 0.11 secs
Transaction rate: 9.72 trans/sec
Throughput: 0.08 MB/sec
Concurrency: 1.05
Successful transactions: 1160
Failed transactions: 0
Longest transaction: 0.26
Shortest transaction: 0.09

The server was hit 1,160 times by the 100 users, with an average response time of 0.11
seconds. The server was up 100% of the time, and the longest response time was just
0.26 seconds.

Blitz.io
Blitz.io is a web server for running benchmarks against your websites and web apps.
Blitz.io offers a nice GUI for starting a benchmark and generates some beautiful graph‐
ical reports showing your app’s response times. More importantly, Blitz.io can generate
traffic coming from different areas of the world using different user agents to simulate
a more realistic traffic scenario.

The service can get a little costly, but can be useful for easily generating final reports
that represent a more realistic estimate of how your site will perform in the wild.

W3 Total Cache
There are a few plugins for WordPress that will help you set up various tools to increase
the performance of a WordPress site. One plugin in particular, W3 Total Cache, offers
just about every performance-increasing method out there.

Frederick Townes, founder of Mashable and the lead developer of W3 Total Cache,
shares our belief that WordPress optimization should be done as close to the core
WordPress app (the origin) as possible:

Mileage varies, but one thing we know for certain is that user experience sits right next
to content in terms of importance - they go hand in hand. In order for a site or app to
actually reach its potential, it’s critical that the stack, app and browser are all working in
harmony. For WordPress, I try to make that easier than it was in the past with W3 Total
Cache.

For many sites with low traffic or little dynamic content, setting up the most common
settings in W3 Total Cache is all you will need to scale your app. For other sites, you
may want to implement some of the methods bundled with W3 Total Cache individually

W3 Total Cache | 389

www.it-ebooks.info

http://www.it-ebooks.info/

so you can customize them to your specific app. In general, W3 Total Cache does a great
job of making sure that all of the bundled techniques play nice together. For this reason,
it’s a good idea to work with W3 Total Cache to customize things rather than use a
solution outside of the plugin that could conflict with it. We’ll go over a typical config‐
uration for W3 Total Cache, and also describe briefly how some of the techniques work
in general.

W3 Total Cache is available for download from the WordPress.org plugin repository.
Once the plugin is installed, a Performance menu item will be added to the admin
dashboard. You’ll usually have to update permissions on various folders and files on
your WordPress install to allow W3 Total Cache to work. The plugin will give you very
specific messages to get things set up. Once this is done, you’re ready to start enabling
the various tools bundled with the plugin.

The W3 Total Cache plugin is available in its entirety for free through
the WordPress plugin repository. You will need to purchase a plan
through a content delivery network provider (CDN) to take advan‐
tage of the CDN features of W3 Total Cache. And finally, the mak‐
ers of W3 Total Cache offer various support and configuration serv‐
ices through their website.

To enable the tools we want to use, go to the General Settings page of the W3 Total Cache
Performance Menu. Find the Enable checkbox for the Page Cache, Minify, Database
Cache, Object Cache, and Browser Cache sections, check the box, and then click one of
the Save All Settings (see Figure 16-5).

Figure 16-5. Check Enable in the box for each performance technique that you want to
use

You can typically get by using the default and recommended settings for all of the W3
Total Cache tools. Your exact settings will depend on the specifics of your app, your

390 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/wpo-w3cache
http://www.it-ebooks.info/

hosting setup, and how your users use your app. There are a lot of settings, and we won’t
go over all of them, but we’ll cover a few of the more important settings in the following
sections.

Page Cache Settings
A page cache is exactly what it sounds like: the caching of entire web pages after they’ve
been generated. When a new user visits your site, if a cache of the page is available, that
static HTML file is served instead of loading the page through PHP and WordPress. If
there is no cache or the cache has expired, the page is loaded as it normally would
through WordPress.

For a web server like Nginx or Apache, serving a static HTML file is much faster than
serving a dynamic PHP file. Serving stacking files avoids all of the database calls and
calculations that are required in your dynamic PHP scripts, but it also plays to the
strengths of your web stack, which is architected from the OS level up to the web server
level primarily to push files around quickly.

Every visit that is served a static HTML file instead of generating a dynamic page in
PHP is going to save you some RAM and CPU time. With more resources available,
even noncached or noncachable pages are going to load faster. So page caching can
greatly speed up page loads on your site, and is one of the primary focuses of web hosts
and others trying to serve WordPress sites quickly.

On the Page Cache page under the Performance menu, you’ll usually want to enable the
following options in the General box: Cache front page, Cache feeds, Cache SSL (https)
requests, Cache 404 (not found) pages, and “Don’t cache pages for logged in users.” See
Figure 16-6 for an example.

The “Don’t cache pages for logged in users” checkbox is an important option to check
because logged-in users will often have access to private account information, and you
don’t want that stuff getting into the cache. At the very least, you might accidentally
show a cached “Howdy, Jason” in the upper right of your website for users who aren’t
Jason. In the worst-case scenario, you might share Jason’s personal email address or
account numbers.

For these reasons, full page caching is typically going to cause problems for logged-in
members. Other types of caching can still help speed up page load speeds for logged-in
members, and we’ll cover a few methods later in this chapter.

W3 Total Cache | 391

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 16-6. W3 Total Cache page cache general settings

Another important option to get familiar with is the ability to exclude certain pages,
paths, and URLs from the page cache. Inside of the Advanced box is a text area labeled
“Never cache the following pages.” This text area is shown in Figure 16-7.Pages, paths,
and URLs added to this setting are going to be ignored by the page cache, and so will
be generated fresh on every page load. Place one URL string per line, and regular ex‐
pressions are allowed.

Figure 16-7. Never cache the following pages section in W3 Total Cache Page settings

Some common pages that you will want to exclude from the page cache include checkout
pages, login pages, non-JavaScript-based contact forms, API URLs, and any other pages
that should be generated dynamically on each load.

392 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Minify
Minifying is the process of both combining and removing excess whitespace and un‐
necessary characters from source files, typically JavaScript and CSS files, to reduce the
file size of those files when served to the web browser. Smaller file sizes means faster
load times.

You are probably familiar with files like jquery.min.js, which is a minimized version of
the jQuery library. W3 Total Cache will automatically minify all of your CSS and JS files
for you. You can also enable the minification of HTML files (most notably from the
page cache), which can save a bit on page loads as well.

In general, minification is a good idea on production sites. On development sites, you
will want to leave minification off so you can better debug CSS and scripting issues.

Database Caching
W3 Total Cache offers database caching. This will store the results of SELECT queries
inside of a cache file (or in a memory backend). Repeated calls to the same DB query
will pull results from the cache instead of querying the database, which may be on an
entirely different service that is part of the slowdown.

If your database server is running on solid state drives (SSDs) or have some kind of
caching enabled at the MySQL layer, database caching with W3 Total Cache may not
improve performance and can negatively impact it, relatively speaking. So be sure to
run benchmarks before and after enabling database caching to see if it helps your site
and analyze your slow query log to identify queries that can be manually tuned. Re‐
member, caching scales servers; it doesn’t magically resolve fundamentally slow per‐
forming queries or code.

If you find that specific queries are taking a long time, you can cache them individually
using WP transients or other fragment caching techniques, which are covered later in
this chapter.

Object Cache
Object caching is similar to database caching, but the PHP representations of the objects
are stored in cache instead of raw MySQL results. Like database caching, object caching
can sometimes slow your site down instead of speeding it up; your mileage may vary.
Using a persistent object cache (covered later in this chapter) will make it more likely
that the object cache will speed up your site. Be sure to benchmark your site before and
after configuring object caching.

Object caching is also known to cause issues with some WordPress plugins or activities
in WordPress. Object caching is a powerful tool for speeding up your site, but you may

W3 Total Cache | 393

www.it-ebooks.info

http://www.it-ebooks.info/

have to spend time tweaking the lower levels of the scripts you use to make them work
with the plugins and application code for your specific app.

CDNs
A content delivery network or CDN is a service that can serve static files for you—
typically images, JavaScript files, and CSS files—on one or many colocated servers that
are optimized for serving static files. So instead of loading an image off the same server
that is generating the PHP pages for your site, your images will be loaded from whichever
CDN server is closest to you. Even if you use your own server as a CDN, you can decrease
load times because the browser will be able to load the static files and PHP page at the
same time because a separate browser connection will be used for both.

W3 Total Cache can help you integrate with many of the most popular CDNs. The plugin
will handle uploading all of your media files, static script files, and page cache files to
the CDN, automatically redirect URLs on your site to the CDN and, most importantly,
purge modified files for those CDNs that support it.

GZIP Compression
GZIP compression is another neat trick that will often speed up your site. In effect, you
trade processing time (when the files are zipped up) for download time (since the files
will be smaller). The browser will unzip the files on the receiving end. The time saved
by downloading smaller files usually makes up for the time spent zipping and unzipping
them. Of course, when using W3 Total Cache, the compression happens once when the
cache is built.

But again, like everything else, run a benchmark before and after enabling GZIP com‐
pression to make sure that your site is benefiting from the feature.

Hosting
Upgrading your hosting is one of the best things you can do to improve performance
for your WordPress app. More CPU and RAM will speed up PHP, MySQL, and your
underlying web server. This may be sound obvious, but many people can get caught up
in the excitement of optimizing code or using caching techniques to speed up part of
their web app while ignoring a simple hosting upgrade that will improve performance
across the board.

Of course, we advocate using all of the techniques in this chapter if applicable and within
budget. However, one of the earliest decisions you are likely to make, possibly before
you even start coding, is where you are going to host your finished web app.

You can find our specific recommendations for hosting WordPress apps on this book’s
website. In this section, we’ll cover the different types of hosting to consider.

394 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bwawwp.com/hosting/
http://www.it-ebooks.info/

WordPress-Specific Hosts
As WordPress has become more popular for building websites, hosting companies have
cropped up that are configured specifically for running WordPress sites. The earliest of
these were Page.ly, Zippykid, WP Engine, and SiteGround.

The WordPress-specific hosts offer managed environments with server-side caching
and a support staff that is more knowledgeable about WordPress than a typical hosting
company.

The control panels for these hosts are similar to shared hosting plans, with limited
flexibility in adjusting the underlying configuration. On the plus side, these hosts typ‐
ically handle a lot of your caching setup, do a great job managing spam and denial of
service attacks, and can quickly scale your app as load increases. On the downside, the
limited configurability can be an issue with certain apps and plans can get pricey for
larger sites.

Rolling Your Own Server
The alternative to WordPress-specific managed hosting is to roll your own server, either
on dedicated hardware or in a cloud environment.

On the dedicated side, Rackspace is a popular choice, and 1and1 provides powerful
hardware at wholesale prices. On the cloud side, Amazon EC2 is very popular, and
Digital Ocean is a cost-effective alternative.

No matter which route you go, you will have to set up your own web server, install PHP
and MySQL yourself, and manage all of the DNS and other server maintenance yourself.
Depending on your needs and situation, this could be a good thing or a bad thing. If
you need a more specific configuration for your app, you have to roll your own server.
On the other hand, you’ll have to spend time or money on server administration that
might be better spent elsewhere.

It’s important to know where your limits are in terms of server administration. For
example, Jason is very experienced setting up web servers like Apache and configuring
and maintaining PHP and MySQL. On the other hand, he has little experience managing
a firewall against denial of service attacks or load balancing across multiple servers.
You’ll want to choose a hosting company and option that works to your strengths and
makes up for your weaknesses.

Rolling your own server and getting 10 times the raw performance for 1/10th the cost
of a shared hosting plan can feel pretty good. But when you find yourself up at 3 a.m.,
wasting time struggling to keep your server alive against automated hacking attempts
from foreign countries, the monthly fee of the managed options may not seem so steep.

Below, we’ll go quickly over a few common setups for Linux-based servers running
WordPress. Details on how to set up each individual configuration are constantly evolv‐

Hosting | 395

www.it-ebooks.info

http://www.it-ebooks.info/

ing. We will try to always have links to the most recent instructions and reviews online
at the book’s website.

Best practices for setting up and running web servers and the vari‐
ous caching tools that speed them up are changing all the time. Also,
instructions will depend on your particular server, which version of
Linux it is running, which other tools you are using, and the specifics
of the app itself. The proper way to use the information in the rest
of this chapter is to go over the instructions provided here and in
the linked to articles to get an idea of how the technique being cov‐
ered works. If you decide to implement the technique on your own
server, do some research (Google) to find a tutorial or instructions
that are up to date and more specific to your situation.

Apache server setup
As the most popular web server software in use today, it is usually fairly painless to
install Apache on any flavor of Linux server.

Once set up, there are a few things you can do to optimize the performance of Apache
for your WordPress app:

• Disable unnecessary modules loaded by default.
• Set up Apache to use prefork or worker multi-processing, depending on your need.

A good overview of each option can be found at Understanding Apache 2 MPM
(worker vs prefork). Prefork is the default and what is usually best for running
WordPress.

• If using the Apache Prefork Multi-Processing Module (default), configure the
StartServers, MinSpareServers, MaxSpareServers, ServerLimit, MaxClients, and
MaxRequestsPerChild values.

• If using the worker Multi-Processing Module, configure the StartServers, Max‐
Clients, MinSpareThreads, MaxSpareThreads, ThreadsPerChild, and MaxRe‐
questsPerChild values.

There are a couple settings in particular to pay attention to when optimizing Apache
for your hardware and the app it’s running. These settings typically have counterparts
in other web servers as well. The concepts behind them should be applicable to any web
server running WordPress.

The following settings and instructions assume you are using the more common prefork
module for Apache:

396 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bwawwp.com/servers/
http://bit.ly/apache2mpm
http://bit.ly/apache2mpm
http://www.it-ebooks.info/

MaxClients
When Apache is processing a request to serve a file or PHP script, the server creates
a child process to handle that request. The MaxClients setting in your Apache con‐
figuration tells Apache the maximum number of child processes to create.

After reaching the MaxClients number, Apache will queue up any other incoming
requests. So if MaxClients is set too low, your visitors will experience long load times
as they wait for Apache to even start to process their requests.

If MaxClients is set to high, Apache will use up all of your RAM and will start to
use swap memory, which is stored on the hard drive and much much slower than
physical RAM. When this happens, your visitors will experience long load times
since their requests will be handled using the slower swap memory.

Besides simply being slower, using swap memory also requires more CPU as the
memory is swapped from hard disks to RAM and back again, which can lead to
lower performance overall. When your server backs up like this, it’s called thrashing
and can quickly spiral out of control and eventually will lock up your server.

So it’s important to pick a good value for your MaxClients setting. To determine an
appropriate value for MaxClients for your Apache server, take the amount of server
memory you want to dedicate to Apache (typically as much as possible after you
subtract the amount that MySQL and any other services on your server use) and
then divide that by the average memory footprint of your Apache processes.

There is no exact way to figure out how much memory your services are using or
how much memory each Apache process takes. It’s best to start conservatively and
to tweak the values as you watch in real time.

Using the command top -M we can see the total memory on our server, how much
is free, and how much active processes are currently using. On our test server, which
is under no load, I see that we have 11.7 GB of memory and 10.25 GB of that free.
If we want to do a 50/50 split between Apache and MySQL (another assumption
you should test out and adjust to your specific app), we can dedicate about 4.5 GB
to Apache, 4.5 GB to MySQL, and leave the rest (up to 2.7 GB in this case) for
padding and other services running on the server.

Figure 16-8 shows an example of the output from running the top command.

Hosting | 397

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 16-8. Using the top command to figure out how much memory is available

To figure out how much memory Apache needs for each process, you can use top
-M again, when the server is under normal loads. Look for processes running the
httpd command. If we see our app using about 20 MB of memory for each process,
we would divide 4.5 GB (~4600 MB) by 20 MB and get 230, meaning our server
should be able to support 230 MaxClients in 4.5 GB of memory.

When setting the MaxClients value, set the ServerLimit value to the same number.
ServerLimit is a kind of MaxMaxClients that can only be changed when Apache is
restarted. The MaxClients setting can be changed by other scripts while Apache is
running, although this isn’t commonly done. So theoretically ServerLimit could be
set higher than MaxClients and some process could change the MaxClients value
up or down while Apache was running.

MaxRequestsPerChild
Each child process or client spun up by Apache will handle multiple requests one
after another. If MaxRequestsPerChild is set to 0, these child processes are never
shut down, which is good since it lowers the overhead of spinning up a new child
process but can be bad if there is a memory leak in your app. Setting MaxRequest‐
sPerChild to a very high number like 1,000 or 2,000 is a nice compromise so that
new processes aren’t shut down and restarted too often but if a memory leak does
occur it will be cleaned up when the child process is eventually shut down.

398 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

KeepAlive
By default, the KeepAlive setting of Apache is turned off, meaning that after serving
a file to a client browser, the connection is closed. A separate connection is opened
and closed for each file request from that browser. Since a single page may have
several files associated with it in the form of images, JavaScript, and CSS, this can
lead to a lot of unnecessary opening and closing of connections.

With KeepAlive turned on, Apache will keep the first connection from a web
browser open and serve all subsequent requests from the same browser session
through that connection. After sitting idle with no requests from the same browser
session, Apache will close the connection. Using a single connection instead of many
can lead to great performance gains for some sites, especially if there are a lot of
images or separate CSS and JavaScript on each page (you should probably be min‐
imizing your CSS and JavaScript into one file for each anyway).

On the other hand, turning KeepAlive on requires more RAM since each connec‐
tion will hold onto the memory for each request as it keeps a connection open.

It’s useful to experiment with turning KeepAlive on. If you do, you should change
the KeepAliveTimeout value from the default 15 seconds to something smaller like
2-3 seconds—or something closer to the real load times of a single page visit on
your site. This will free up the memory faster.

Also, if you turn KeepAlive on, you should probably adjust the MaxClients and
MaxRequestsPerChild settings. Since each child process will be using more memory
as it keeps the connection open, you may need to adjust your MaxClients value
lower to avoid running out of memory. Since each connection counts as one request
with respect to MaxRequestsPerChild, you may want to adjust your MaxRequest‐
sPerChild value lower since there will be fewer requests overall per visit.

Some other good articles on optimizing Apache include:

• “Apache Performance Tuning”
• “Apache MPM Prefork”
• “Apache MPM Worker”
• “How to Set MaxClients in Apache/Prefork” at Fuscata
• “Optimize Apache for WordPress” by Drew Strojny
• “Apache Optimization: KeepAlive On or Off?” by Abdussamad

Nginx server setup
A popular alternative to Apache that is gaining a lot of momentum right now is Nginx.
The main advantage of Nginx is that it is an asynchronous web server whereas Apache

Hosting | 399

www.it-ebooks.info

http://bit.ly/apache-tuning
http://bit.ly/apache-prefork
http://bit.ly/apache-worker
http://bit.ly/set-maxclients
http://bit.ly/optimize-apache
http://bit.ly/apache-keepalive
http://www.it-ebooks.info/

is a process-based web server. What this means in practice is that when many simulta‐
neous clients hit an Apache-based server, a new thread is created for each connection.
With Nginx, all connections are handled by a single thread or a small group of threads.
Since each thread requires a block of memory, Nginx is more memory efficient and so
can process a higher number of simultaneous requests than Apache can.

Some good articles about installing and configuring Nginx include:

• “Nginx,” an article from the WordPress Codex
• “How to Install WordPress with nginx on Ubuntu 12.04” by Etel Sverdlov

Nginx in front of Apache
The trade-off in using Nginx over Apache is that Nginx has fewer module extensions
than Apache. Some modules like mod_rewrite for “pretty permalinks” will have to be
ported over to the Nginx way of doing things. Other modules may not have Nginx
equivalents.

For this reason, it is becoming popular to set up a dual web server configuration where
Nginx serves cached web pages and static content and Apache serves dynamically gen‐
erated content. One article explaining how to configure this setup is “How To Configure
Nginx as a Front End Proxy for Apache” by Etel Sverdlov.

The main advantage of this setup is that static files will be served from Nginxk, which
is configured to serve static files quickly; this will ease the memory burden of Apache.
If you are already using a CDN for your static files, then using Nginx for static files
would be redundant. Also, because you are still serving PHP files through Apache, you
won’t gain the memory benefits of Nginx on dynamically generated pages. For these
reasons, it is probably better to use Nginx for both static files and PHP or Apache with
a CDN for static files.

MySQL optimization
To get the best performance out of WordPress, you will want to make sure that you’ve
configured MySQL properly for your hardware and site use and that you’ve optimized
the database queries in your app.
Optimizing MySQL configuration

The MySQL configuration file is typically found at /etc/my.cnf or /etc/mysql/
my.cnf and can be tweaked to improve performance on your site. There are several
interelated settings. The best way to figure out a good configuration for your hard‐
ware and site is to use the MySQLTuner Perl script.

400 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/codex-nginx
http://bit.ly/wp-nginx
http://bit.ly/nginx-frontend
http://bit.ly/nginx-frontend
http://mysqltuner.com
http://www.it-ebooks.info/

After downloading the MySQLTuner script, you will also need to have Perl installed
on your server. Then run perl mysqltuner.pl and follow the recommendations
given. The output will look like the following:

-------- General Statistics --
[--] Skipped version check for MySQLTuner script
[OK] Currently running supported MySQL version 5.5.32
[OK] Operating on 64-bit architecture

-------- Storage Engine Statistics ---------------------------------------
[--] Status: +Archive -BDB -Federated +InnoDB -ISAM -NDBCluster
[--] Data in MyISAM tables: 35M (Tables: 395)
[--] Data in InnoDB tables: 16M (Tables: 316)
[--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17)
[!!] Total fragmented tables: 327

-------- Security Recommendations ---------------------------------------
[OK] All database users have passwords assigned

-------- Performance Metrics ---
[--] Up for: 26d 22h 6m 21s (8M q [3.755 qps], 393K conn, TX: 15B, RX: 1B)
[--] Reads / Writes: 95% / 5%
[--] Total buffers: 168.0M global + 2.8M per thread (151 max threads)
[OK] Maximum possible memory usage: 583.2M (7% of installed RAM)
[OK] Slow queries: 0% (0/8M)
[OK] Highest usage of available connections: 21% (33/151)
[OK] Key buffer size / total MyISAM indexes: 8.0M/21.1M
[OK] Key buffer hit rate: 100.0% (84M cached / 40K reads)
[!!] Query cache is disabled
[OK] Sorts requiring temporary tables: 0% (3 temp sorts / 1M sorts)
[!!] Joins performed without indexes: 23544
[!!] Temporary tables created on disk: 26% (359K on disk / 1M total)
[!!] Thread cache is disabled
[OK] Table cache hit rate: 34% (400 open / 1K opened)
[OK] Open file limit used: 68% (697/1K)
[OK] Table locks acquired immediately: 99% (8M immediate / 8M locks)
[OK] InnoDB data size / buffer pool: 16.1M/128.0M

-------- Recommendations ---
General recommendations:
 Run OPTIMIZE TABLE to defragment tables for better performance
 Enable the slow query log to troubleshoot bad queries
 Adjust your join queries to always utilize indexes
 When making adjustments, make tmp_table_size/max_heap_table_size equal
 Reduce your SELECT DISTINCT queries without LIMIT clauses
 Set thread_cache_size to 4 as a starting value
Variables to adjust:
 query_cache_size (>= 8M)
 join_buffer_size (> 128.0K, or always use indexes with joins)
 tmp_table_size (> 16M)
 max_heap_table_size (> 16M)
 thread_cache_size (start at 4)

Hosting | 401

www.it-ebooks.info

http://www.it-ebooks.info/

One thing to note is that MySQLTuner will give better recommendations if it has
at least one day’s worth of log data to process. For this reason, it should be run 24
hours after MySQL has been restarted. You’ll want to follow the recommendations
given, wait 24 hours, and run the script again, then rinse and repeat over a few days
to narrow in on optimal settings for your MySQL setup.

Optimizing DB queries
A large source of load-time-draining process cycles is unoptimized, unnecessary,
or otherwise slow MySQL queries. Finding and optimizing these slow SQL queries
will speed up your site. Caching database queries, either at the database level or
through the use of transients for specific queries, will help with slow queries, but
you definitely want the original SQL as optimized as possible.

The first step in optimizing your database queries is to find out which queries are
slow or otherwise undeeded. A great tool to do this is the Black Box Debug Bar
plugin.

The Black Box Debug Bar, shown in Figure 16-9, adds a bar to the top of your
website that will show you a page’s load time in milliseconds, the number of SQL
queries made and how long they took, and the number of PHP errors, warnings,
and notices on the page.

Figure 16-9. The Black Box Debug Bar added to the top of all pages on your site
while active

If you click on the SQL icon in the debug bar, you will also see all of the SQL queries
made and the individual query times.

Viewing the final generated SQL query is especially useful for
queries that might be constructed across several PHP functions
or with a lot of branching logic. For example, the final query to
load posts on the blog homepage of WordPress is generated using
many variables stored in the $wp_query object depending on if a
search is being made, what page of the archive you are on, etc.

402 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/blackboxdebug
http://www.it-ebooks.info/

With the debug bar turned on, you can browse around your site looking for queries
that are slow or outright unnecessary.

Another way to find slow SQL queries is to enable slow query logging in your
MySQL configuration file. This will help find slow queries that come up in real use.
You don’t want to rely on the slow query log, but it can catch some real-world use
cases that won’t come up in testing.

To enable slow query logging in MySQL, find your my.cnf or my.ini file and add
the following lines:

slow-query-log = 1;
slow-query-log-file = /path/to/a/log/file;

After updating your MySQL configuration file, you will need to restart MySQL.

When trying to optimize your DB queries, you should always be on the lookout
for:

• Cases where the same SQL query is being run more than once per page load.
Store the result in a global variable or somewhere else to access it later in the
page load.

• Cases where one SQL query can be used instead of many. For example, plugins
can load all of their options at once instead of using a separate query or getOp
tion() call for each option.

• Cases where a SQL query is being run, but the result is not being used. Some
queries may only need to be run in the dashboard or only on the frontend or
only on a specific page. Change the WordPress hook being used or add PHP
logic around these calls so they are only executed when needed.

If you find a necessary query that is taking a particularly long time, how you go about
optimizing it will be very specific to the query itself. Here are some things to try:

• Adjust queries to use only indexed columns in WHERE, ON, ORDER BY, and
GROUP BY clauses.

• Add WHERE clauses to your JOINs so you are joining smaller subtables.
• Use a different table to store your data, for example, using taxonomies versus post

meta, which is covered in Chapter 5.
• Add indexes to columns that are used in WHERE, ON, ORDER BY, and GROUP

BY clauses.

Hosting | 403

www.it-ebooks.info

http://www.it-ebooks.info/

3. I suppose there can only be one keystone. You’ll have to forgive me this time.

advanced-cache.php and object-cache.php
The keystones3 that enable all of these caching techniques, including the ones used by
the W3 Total Cache plugin, are the advanced-cache.php and/or object-cache.php files,
which can be added to the /wp-content/ directory.

To tell WordPress to check for the advanced-cache.php and object-cache.php files, add
the line define(‘WP_CACHE’, true); to your wp-config.php file.

The advanced-cache.php file is loaded by wp-settings.php before the majority of the
WordPress source files are loaded. Because of this, you can execute certain code (e.g.,
to look for a cache file on the server) and then stop PHP execution with an exit;
command before the rest of WordPress loads.

If a object-cache.php file is present, it will be used to define the WP Cache API functions
instead of the built-in functions found in wp-includes/cache.php. By default, WordPress
will cache all options in an array during each page load. Transients are stored in the
database. If you write your own object-cache.php file, you can tell WordPress to store
options and transients in a RAM-based memory that is persisted between page loads.

Plugins like W3 Total Cache are mostly a frontend for generating an advanced-
cache.php file based on the settings you choose. You can also choose to roll your own
advanced-cached.php or object-cache.php file or use one configured already for a specific
caching tool or technique. Most of the caching techniques that follow involve using a
specific advanced-cache.php or object-cache.php file to interact with another service for
caching.

If you add a header comment to the top of your .php files dropped into the wp-
content directory with the same structure as a plugin (plugin name, description, etc),
then that information will show up on the Drop-ins tab of the plugins page in the
WordPress dashboard.

Alternative PHP Cache (APC)
Alternative PHP Cache is an extension for PHP that acts as an opcode cache and can
be used to store key-value pairs for object caching.
Opcode caching

When a PHP script is executed, it is compiled to opcodes that are ready to be exe‐
cuted by the server. With an opcode cache, part of the compiling is cached until the
underlying PHP scripts are updated.

Key-value cache
APC also adds the apc_store() and apc_fetch() functions, which can be used to
store and retrieve bits of information from memory. A value stored in memory can

404 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

typically be loaded faster than a value stored on a hard disk or in a database, espe‐
cially if that value requires some computation. Plugins like W3 Total Cache or APC
Object Cache Backend can be used to store the WordPress object cache inside of
RAM using APC.

These are the rough steps to set up APC:

1. Install APC on your server, configure PHP to use it, and restart your web server.
2. Configure WordPress to use APC using W3 Total Cache, APC Object Cache Back‐

end, or another plugin or custom object-cache.php script.

Here are some good links for information on using APC in general and with WordPress:

• “Alternative PHP Cache” at PHP.net
• “How to Install Alternative PHP Cache (APC) on a Cloud Server Running Ubuntu

12.04” by Danny Sipos

PHP versions 5.5 and higher come compiled with OPCache, which is
an alternative to APC for opcode caching. However OPCache does
not have the same store and fetch functionality that APC has for object
caching. For this reason, you need to either disable OPCache and use
APC or run an updated version of APC called APCu alongside OPC‐
ache. APCu offers the store and fetch functionality but leaves the
opcode caching to OPCache.

Memcached
Memcached is a system that allows you to store key-value pairs in RAM that can be used
as a backend for an object cache in WordPress. Memcached is similar to APC, minus
the opcode caching.

You can store your full-page caches inside of Memcached instead of files on the server
for faster load times, although the performance gain will be slower for modern servers
with faster solid-state drives. Memcached can be run on both Apache- and Nginx-based
servers.

One of the advantages of Memcached over other object caching techniques (including
Redis and APC) is that a Memcached cache can be distributed over multiple servers. So
if you have multiple servers hosting your app, they can all use the one Memcached
instance to store a common cache instead of having their own (often redundant) cache
stores on each server. Interesting note: the enterprise version of W3 Total Cache allows
you to use APC across multiple servers seamlessly.

These are the rough steps to set up Memcached:

Hosting | 405

www.it-ebooks.info

http://wordpress.org/plugins/apc/
http://wordpress.org/plugins/apc/
http://bit.ly/php-apc-manual
http://bit.ly/install-php-cache
http://bit.ly/install-php-cache
http://www.it-ebooks.info/

1. Install the Memcached service on your server, give it some memory, and run it.
2. Use W3 Total Cache or the Memcached Object Cache plugin to update the Word‐

Press object cache to use Memcached.

Here are some good links for information on using Memcached in general and with
WordPress:

• “Memcached” at PHP.net
• the Memcached website
• “WordPress + Memcached” by Scott Taylor

Redis
Redis is another system for storing key-value pairs in memory on your Apache- or
Nginx-based web server. Like Memcached, it can be used as a backend for your Word‐
Press object cache or page cache.

Unlike Memcached, Redis can store data in lists, sets, and sorted sets in addition to
simple key-value hashes. These data structures are always useful for your apps, and the
maturity of Memcached, which was created a few years before Redis, is appreciated by
some developers.

These are the rough steps to setup Redis:

1. Install Redis on your server, give it some memory, and run it.
2. Use a replacement for the WordPress index.php that searches the Redis cache and

serves pages from there if found. A popular version is wp-redis-cache.
3. Run a plugin or other script to clear the Redis cache on post updates/etc.

Here are some good links for information on using Redis in general and with WordPress:

• The Redis website
• WP-Redis-Cache
• “WordPress with Redis as a Frontend Cache” by Jim Westergren

Varnish
Varnish is a reverse proxy that can sit in front of your Apache or Nginx setup and serve
cached versions of complete web pages to your visitors. Because your web server and
PHP are never even loaded for cached pages, Varnish will outperform Memcached and
Redis for full page caching. On the other hand, Varnish is not meant to do object caching
and so will only work for static pages on your site.

406 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/wp-memcached
http://bit.ly/php-mem
http://memcached.org/
http://bit.ly/scott-taylor
http://redis.io
http://bit.ly/wp-redis-cache
http://bit.ly/wp-with-redis
http://www.it-ebooks.info/

These are the rough steps for setting up Varnish with WordPress:

1. Install Varnish on your server.
2. Configure Varnish to ignore the dashboard at /wp-admin/ and other sections of

your site which shouldn’t be cached.
3. Use a plugin to purge the Varnish cache when posts are updated and other updates

are done to WordPress. Some popular plugins to do this are WP-Varnish and
Varnish HTTP Purge.

Here are some good links for information on using Varnish in general and with Word‐
Press.

• The Varnish website
• “How to Install and Customize Varnish for WordPress” by Austin Gunter
• Varnish 3.0 Configuration Templates

Batcache
Batcache uses APC or Memcached as a backend for full-page caching in WordPress.
The end result should be similar to using W3 Total Cache or another plugin integrated
with APC or Memcached for full-page caching.

One thing unique to Batcache is that the caching is only enabled if a page has been
loaded two times within 120 seconds. A cache is then generated and used for the next
300 seconds. These values can be tweaked to fit your purposes, but the basic idea here
is that Batcache is meant primarily as a defense against traffic spikes like those that
happen when a website is “slashdotted,” “techcrunched,” “reddited,” or linked to by any
of the other websites large enough to warrant its own verb. Another benefit to caching
only pages under heavy load is that a lower amount of RAM is required to store the
cache.

If you tweak the default settings, you can set up Batcache to work as an always-on full
page caching system.

These are the rough steps for setting up Batcache with WordPress:

1. Set up Memcached or APC to be used as the in-memory key-value store for Batc‐
ache.

2. Download the Batcache plugin from the WordPress repository.
3. Move the advanced-cache.php file to the wp-content folder of your WordPress in‐

stall.

Hosting | 407

www.it-ebooks.info

http://bit.ly/wp-varnish
http://bit.ly/varnish-http
https://www.varnish-cache.org/
http://bit.ly/custom-varnish
http://bit.ly/varnish30
http://www.it-ebooks.info/

Batcache has an interesting pedigree since it was developed specifically for WordPress.
It was first used on WordPress VIP sites and WordPress.com. Batcache was originally
called Supercache, but the popular caching plugin WP Super Cache was released around
the same time and the Supercache/Batcache authors changed the name from one famous
DC Comics caped crusader to another. Here are some good links for information on
using Batcache with WordPress.

• The Batcache plugin
• “WordPress Caching using APC and Batcache” by Jonathan D. Johnson
• Original Batcache announcement and overview by Andy Skelton

Selective Caching
The caching methods described so far have either been full page caches or otherwise
“dumb” caches storing every WordPress object in cache. Rules could then be added to
tell the cache to avoid certain URLs or conditions, but basically you were caching all of
the things.

Sometimes you will want to do things the other way around. You’ll want to cache specific
pages and objects. This is typically done by storing information within a WordPress
transient. If you have a persistent object enabled like APC, that stored object will load
that much faster.

What we’re calling selective caching here is being commonly re‐
ferred to as fragment caching. No matter the term, the concept is the
same: caching parts of a rendered web page instead of the full page.

For example, you might have a full-page cache enabled through W3 Total Cache or
Varnish, but you’ll need to exclude logged-in users from seeing the cache because
member-specific information could get cached. Mary could end up seeing “Welcome,
Bob” in the upper right of the page. Still, some portion of each page might be the same
for each user or certain kinds of users. We can selectively cache that information if it
takes excessive database calls or computation to compile.

Good candidates for selective caching include reports, complicated post queries, and
other bits of content that require a lot of time or memory to compute.

The Transient API
Transients are the preferred way for WordPress apps to set and get values out of the
object cache. If no persistent caching system is installed, the transients are stored inside

408 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://bit.ly/wp-batcache
http://bit.ly/cache-apc
http://bit.ly/batcache-app
http://www.it-ebooks.info/

of the wp_options table of the WordPress database. If an object caching system like
APC, APCu, Memcached, or Redis is installed, then that system is used to store the
transients.

At any time, the server could be rebooted or the object cache memory could be cleared,
wiping out your stored transients. For this reason, when storing transients, you should
always assume that the storage is temporary and unreliable. If the information to be
stored needs to be saved, you can still store it inside of a transient redundantly for
performance reasons, but make sure you also store it in another way—most likely by
saving an option through update_option().

In the SchoolPress app, we need to get an average homework score across all assignments
a single student has submitted. The query for this would involve running the average
function against the meta_value column of the wp_usermeta table. Running an average
for one student with say 10 to 100 assignments wouldn’t be too intense; however, if you
had a page showing the average score for 20-80 students within one class, that series of
computations might take a while to run. To speed this up, we can cache the results of
the full class report within a transient, as illustrated in Example 16-1.

This is a perfect use case for using transients because having access to the computed
results inside of a transient will speed up repeated loads of the report, but it’s OK if the
transient suddenly disappears because we can always compute the averages from
scratch.

Example 16-1. SPClass
class SPClass()
{
 /* ... constructor and other methods ... */

 function getStudents()
 {
 /* gets all users within the BuddyPress group for this class */

 return $this->students; //array of student objects
 }

 function getAssignmentAverages()
 {
 //check for transient
 $this->assignment_averages =
 get_transient('class_assignment_averages_' . $this->ID);

 //no transient found? compute the averages
 if(empty($this->assignment_averages))
 {
 $this->assignment_averages = array();
 $this->getStudents();

Selective Caching | 409

www.it-ebooks.info

http://www.it-ebooks.info/

 foreach($this->students as $student)
 {
 $this->assignment_averages[$student->ID] =
 $student->getAssignmentAverages();
 }

 //save in transient
 set_transient('class_assignment_averages_' .
 $this->ID, $this->assignment_averages);
 }

 //return the averages
 return $this->assignment_averages;
 }
}

//clear assignment averages transients when an assignment is graded
public function clear_assignment_averages_transient($assignment_id)
{
 //class id is stored as postmeta on the assignment post
 $assignment = new Assignment($assignment_id);
 $class_id = $assignment->class_id;

 //clear any assignment averages transient for this class
 delete_transient('class_assignment_averages_' . $class_id);
}
add_action('sp_update_assignment_score', array('SPClass',
 'clear_assignment_averages_transient'));

The example includes a lot of snipped code and makes some assumptions about the
SPClass and Student classes. However, you should get the idea of how this report uses
transients to store the computed averages, retrieve them, and clear them out on updates.

In the preceding example, we store the array stored in $this->assignment_averages
in the transient. Alternatively, we could have stored the generated HTML, but storing
the array saves us most of the complex database calls and is more flexible.

The function to store a value inside of a transient is set_transient($transient, $val
ue, $expiration), and attributes are as follows:

• $transient—Unique name for the transient, 45 characters or less.
• $value—The value to store. Objects and arrays are automatically serialized and

unserialized for you.
• $expiration – An optional parameter to set an expiration for the transient in sec‐

onds. Expired transients are deleted by a WordPress garbage collection script. By
default, this value is 0 and doesn’t expire until deleted.

410 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that we use a descriptive key (class_assignment_averages_) followed by the
ID of the class group. This way all classes will have their own transient for storing
assignment averages.

To retrieve the transient, we simply call get_transient($transient), passing one pa‐
rameter with the unique name of the transient. If the transient is available and not past
expiration, the value is returned. Otherwise the call returns false.

To delete the transient before expiration, we simply call delete_transient($transi
ent) passing one parameter with the unique name of the transient. Notice that in the
example, we hook into the sp_update_assignment_score that is fired when any as‐
signment gets scored. We pass an array as the callback for the hook since the method is
part of the SPClass class. The “sp_update_assignment_score” hook passes the $assign
ment_id as a parameter. The callback method uses this ID to find the assignment and
the associated class ID, then deletes the corresponding class_assignment_averag
es_{ID} transient.

If you were storing transients related to posts or users, you may want to clear them out
on “save_post” or “profile_update,” respectively.

The transient functions are fairly simple wrappers for the functions
defined in the default wp-includes/cache.php or your drop-in object-
cache.php file: wp_cache_set(), wp_cache_get(), and wp_cache_de
lete(). If you wanted, you could call these functions directly. Infor‐
mation on these functions can be found in the WordPress Codex.

Multisite Transients
In network installs, the transients set with set_transient() are specific to the current
network site. So our “class_assignment_averages_1” set on one network site won’t be
available on another network site. (This makes sense in the assignment scores example.)

If you’d like to set a transient network-wide, WordPress offers variants of the transient
functions:

• set_site_transient($transient, $value, $expiration)

• get_site_transient($transient)

• delete_site_transient($transient)

These functions work the same as the basic transient functions; however, the
_site_transients are stored in wp_site_options instead of the individual network
site wp_options tables.

Selective Caching | 411

www.it-ebooks.info

http://bit.ly/class-ref
http://www.it-ebooks.info/

Because the transients set with set_site_transient() prefix the string _site to the
front of the transient name, you only have 40 characters to work with for the name
versus the usual 45.

Finally, it should be noted that a different set of hooks fire before and after a network-
wide transient is set versus a single network site transient. If you’ve written code that
hooks into pre_set_transient, set_transient, or setted_transient, you may need
to have that code also hook into pre_set_site_transient, pre_set_transient, and
pre_setted_site_transient.

Using JavaScript to Increase Performance
A useful tactic for speeding up page loads is to load certain parts of a web page through
JavaScript instead of generating the same output through dynamic PHP.

This technique can make pages appear to load faster since the frame of the web page
can be loaded quickly while the time-intensive portion of the site can loaded over time
while a “loading…” icon flashes on the screen or a progress bar fills up. Your users will
get immediate feedback that the page has loaded along with an indication to sit tight
for a few seconds while the page renders.

Using JavaScript can also literally speed up your page loads. If you load all of the dynamic
content of a page through JavaScript, you can then use a page cache to serve the rest of
the page without hitting PHP.

For example, on many blogs, the only piece of dynamic content is the comments. Using
the built-in WordPress comments and a full page cache means that recent comments
won’t show up on the site until the cache clears. However, if you use a JavaScript-based
commenting system like those provided through the JetPack plugin or a service like
Disqus or Facebook, then your comments section is simply a bit of static JavaScript code
that loads the dynamic comments from another server.

Example 16-2 shows a bare-bones example of how you can go about loading specific
content through JavaScript on an otherwise static page.

Example 16-2. JS Display Name plugin
<?php
/*
Plugin Name: JS Display Name
Plugin URI: http://bwawwp.com/js-display-name/
Description: A way to load the display name of a logged-in user through JS
Version: .1
Author: Jason Coleman
Author URI: http://bwawwp.com
*/

/*

412 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

 use this function to place the JavaScript in your theme
 if(function_exists("jsdn_show_display_name"))
 {
 jsdn_show_display_name();
 }
*/
function jsdn_show_display_name($prefix = "Welcome, ")
{
?>
<p>
 <script src="<?php echo admin_url(
 "/admin-ajax.php?action=jsdn_show_display_name&prefix=" .
 urlencode($prefix)
);?>"></script>
</p>
<?php
}

/*
This function detects the JavaScript call and returns the user's display name
*/
function jsdn_wp_ajax()
{
 global $current_user;
 if(!empty($current_user->display_name))
 {
 $prefix = sanitize_text_field($_REQUEST['prefix']);
 $text = $prefix . $current_user->display_name;

 header('Content-Type: text/javascript');
 ?>
 document.write(<?php echo json_encode($text);?>);
 <?php
 }

 exit;
}
add_action('wp_ajax_jsdn_show_display_name', 'jsdn_wp_ajax');
add_action('wp_ajax_nopriv_jsdn_show_display_name', 'jsdn_wp_ajax');

Custom Tables
Another tool you will definitely need in your toolbox when building WordPress apps
in general, but specifically when trying to optimize performance, is to build a custom
database table or view to make certain lookups and queries faster.

With SchoolPress, we may need to do lots of queries on the assignment objects. We’ll
want to sort by score, class, teacher, student, assignment date, and submission date.
Maybe we need to sort by some combination of those. If those values are stored in the

Custom Tables | 413

www.it-ebooks.info

http://www.it-ebooks.info/

wp_postmeta table, queries on that data will be slow because (1) the wp_postmeta table
will be large with other nonassignment posts and post meta and (2) the meta_value
column is not indexed.

Indexing the meta_value column would be overkill because we would be indexing a lot
of post meta that we don’t need indexed. Inserts into the wp_postmeta table would take
forever and use up a lot of memory.

Switching some of the post meta over to taxonomies wouldn’t make much sense, would
be pretty hard to manage, and wouldn’t necessarily give us the speed increase that we
need.

The following code is a bit contrived, but at some point you will come across a case
where it is better for you to store your data in a custom table rather than some combi‐
nation of posts, post meta, and taxonomies.

Our assignments table might look like the following:

CREATE TABLE `wp_sp_assignments` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `post_id` bigint(20) unsigned,
 `class_id` bigint(20) unsigned,
 `student_id` bigint(20) unsigned,
 `score` int(10),
 `assignment_date` DATETIME,
 `due_date` DATETIME,
 `submission_date` DATETIE
 PRIMARY KEY (`id`),
 UNIQUE KEY `post_id` (`post_id`),
 KEY `class_id` (`class_id`),
 KEY `student_id` (`student_id`),
 KEY `score` (`score`),
 KEY `asignment_date` (`assignment_date`),
 KEY `due_date` (`due_date`),
 KEY `submission_date` (`submission_date`)
);

This is a rather extreme example; every column has an index. It’s probably overkill here,
but it does allow us to make extremely fast queries against this table joined with the
wp_posts table or wp_users table.

If you had a table like this, you would need to hook into the save_post hook to update
the corresponding row in wp_sp_assignments like this:

function sp_update_assignments_table($post_id)
{
 //get the post
 $post = get_post($post_id);

 //we only care about assignments
 if($post->post_type != "assignment")

414 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

 return false;

 //get data ready for insert or replace
 $assignment_data = array(
 "post_id" => $post_id,
 "student_id" => $post->post_author,
 "teacher_id" => $post->teacher_id,
 "score" => $post->score,
 "assignment_date" => $post->assignment_date,
 "due_date" => $post->due_date
 "submission_date" => $post->submission_date
);

 //look for an existing assignment
 $assignment_id = $wpdb->get_var("SELECT id
 FROM wp_sp_assignments
 WHERE post_id = '" . $post_id . "'
 LIMIT 1");

 //if no assignment id, this is a new assignment
 if(empty($assignment_id))
 {
 $assignment_id = $wpdb->insert("wp_sp_assignments", $assignment_data);
 }
 else
 {
 $assignment_data['id'] = $assignment_id;
 $wpdb->replace("wp_sp_assignments", $assignment_data);
 }

 return $assignment_id;
}
add_action('save_post', 'sp_update_assignments_table');

Bypassing WordPress
Finally, one last technique to help you scale your WordPress app: you don’t have to use
WordPress for every part of your app.

We’ve already gone over a few variants of this advice earlier in this chapter. When you
use Varnish, you are bypassing WordPress and loading static HTML files instead. When
you use advanced-cache.php, you are bypassing part of WordPress. When you use Java‐
Script to load comments from Facebook, you are bypassing WordPress. When you store
some of your data in a custom database table, you are bypassing the WordPress frame‐
work.

We use WordPress to build our apps because of the benefits of its security, its function‐
ality, and the large community of plugins and solutions. Having your code written with
the WordPress platform makes it easy for you to hook into the WordPress CMS and
user management. It makes it easy to add hooks into your own code.

Bypassing WordPress | 415

www.it-ebooks.info

http://www.it-ebooks.info/

However, sometimes the performance downside will outweigh all of the benefits. You
don’t have to scrap WordPress altogether, but you can bypass WordPress for specific
functions.

For example, our last script to get the display name of a user through JavaScript could
be written as a simple PHP script that runs a simple SELECT query to get the dis
play_name column of the user specified in the WordPress user cookie. Doing so could
save a few milliseconds off of each page load in your website. If you multiply this across
several dynamic bits across your app, the savings can add up.

In most cases, cutting out WordPress like this should be used as a last resort. The speed
savings are there but at the cost of complicating your code. Running scripts like this
through admin-ajax.php like we did cuts out a lot of the overhead of WordPress and
still allows your code to interact with other plugins and use built-in WordPress classes
and APIs if it need to.

If you are loading a script to export CSV, which is going to take 10 seconds to run anyway,
it’s not as important to cut off that extra 0.5 seconds.

You should always program things as straightforwardly as possible, in this case through
traditional WordPress methods, and only optimize at this level when a bottleneck is
found that is worth optimizing. At that point, explore all of the options presented in
this chapter to figure out which works best for the specific feature you are optimizing,
considering your needs and the team and tools you have at your disposal.

416 | Chapter 16: WordPress Optimization and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$authordata global variable, 68
$blog_id global variable, 319
$current_user object, 76
$post global variable, 68, 239
$shortcode_tags global variable, 180
$styles object, 123
$template variable, 105
$temp_content` function, 65
$text variable, 181
$wpdb class, 72

SELECT queries with, 73
$wpdb object, 227
$wpdb->get_col() method, 72, 73
$wpdb->get_results() method, 73
$wpdb->get_row() method, 74
$wpdb->insert() method, 74
$wpdb->prefix property, 69
$wpdb->prepare() function, 227
$wpdb->prepare() method, 71
$wpdb->query() method, 70
$wpdb->replace() method, 75
$wpdb->update() method, 75
$wpdb` class, 68
$wpdb→query() method, 68
$wp_query object, 76
$wp_query→query_vars[subject] global vari‐

able, 198
$_REQUEST values, checking, 239

$_SERVER[HTTPS] global variable, 349
$_SERVER[HTTP_USER_AGENT] global vari‐

able, 118
% (percent sign), escaping in SQL queries, 72
@import_url, 111
_ (underscore)

meta data keys starting with, 38
_s theme framework, 109
__ (double underscore), class methods start‐

ing with, 157
__() function, 329

_e() function, 329
_ex() function, 330
_x() function, 330
→ (arrow) operator, 157

A
action hooks, 77
actions available to users, controlling, 4
active_sidebar() function, 187
activity_main.xml file, 283
add-ons to existing plugins, 66
add-user_meta() function, 31
add_action() function, 77, 183
add_cap() method, 165
add_comment_meta() function, 47
add_feed() function, 200
add_filter() function, 78, 196
add_meta_box() function, 146

417

www.it-ebooks.info

http://www.it-ebooks.info/

add_option() function, 24
add_post_meta() function, 39
add_rewrite_endpoint() function, 200
add_rewrite_rule() function, 198, 201
add_rewrite_tag() function, 200
add_role() function, 164
add_user_to_blog() function, 325
admin bar, hiding from non-admins, 174
admin dashboard

settings for plugins, 193
SSL login, 348

Admin role, 162
admin username, importance of changing, 216
admin-ajax.php file, 22
admin.css files, 62
admin.js files, 63
/adminpages/ directory, 61
admin_enqueue_scripts hook, 238
ADT (Android Developer Tools), 281
advanced-cache.php, 404
AJAX

admin-ajax.php file, 22
calls triggered through Heartbeat API, 246–

251
calls with WordPress and jQuery, 240–244
check_ajax_referer() function, 235
defined, 237
managing multiple AJAX requests, 244
PHP code for calls in /services/ directory, 65

Akismet plugin, 57, 223
All in One SEO Pack plugin, 79
ALTER TABLE statement, 70
Alternative PHP Cache (APC), 404
Amazon Product Advertising API, 295

operations, 296
request parameters, 296
response groups, 297
search for WordPress books, 298

Android applications, 281–285
activity_main.xml, 283
AndroidManifest.xml, 282
creating an APK file, 284
extending, 285
getting your app on Google Play, 285
MainActivity.java, 283
resources, 285

Android SDK, 281
anonymous functions, 196
Antivirus-Once plugin, 225

Apache Bench, 382–387
graphing results with gnuplot, 385
installing, 382
running, 382
testing with, 384

Apache server
Nginx server in front of, 400
setup, 396

.apk file, 284
app wrapper, 275
Apple developer, enrolling as, 276
apply_filters() function, 78, 179
AppPresser.com, 286
apps

admin, using global of settings, 194
defined, 1
developing, themes versus plugins, 95

archives
for registered CPTs, 142
specifying if post type has archive page, 131

arrays, storing in user meta, 160
arrow operator (→), 157
Ask Apache Password Protect plugin, 225
Asynchronous JavaScript and XML (see AJAX)
asynchronous processing, WordPress limita‐

tions with, 251
attachments, 126
attributes

HTML, escaping, 229
shortcode, 178

authenticating users, 159
Author role, 162

upgrading Subscriber to, 164
Authorize.net, 342

B
Backbone.js framework, 252
Backup Buddy plugin, 81, 224
backups, 222

plugins for, 224
Bad Behavior plugin, 223
BadgeOS Community Add-on plugin, 94
BadgeOS plugin, 79
Batcache, 407
bbPress plugin, 16
BBQ (Block Bad Queries) plugin, 225
Blitz.io, 389
Block Bad Queries (BBQ) plugin, 225
Blog Copier plugin, 319

418 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

blogs, WordPress and, 7
bookmarks, 49
Bootstrap framework, 110

including in StartBox theme, 111
responsive stylesheet adjusting CSS rules for

screen width, 115
Braintree Payments, 342
browscap.ini file, 122
Browser Capabilities Project website, 122
browser detection

in PHP, 118
in WordPress core , 119
reasons for sparing use of, 122
with PHP get_browser(), 121

browsers
CSS stylesheet caching, 106
padlocks, 344

brute-force attacks, 215
plugin protecting against, 225

BuddyMobile plugin, 94
BuddyPress FollowMe plugin, 93
BuddyPress Media plugin, 93
BuddyPress plugin, 82–94

components, setting up, 88
configuring additonal settings, 91
groups, SchoolPress classes as, 16
pages, mapping to components used, 90
plugins to extend BuddyPress, 93
profile fields, 92
tables created in WordPress database, 84
Toolbar, 93

BuddyPress Registration Options plugin, 94
buffering output, 65
_builtin, 134

C
caching, 389

(see also W3 Total Cache)
advanced-cache.php and object-cache.php,

404
Alternative PHP Cache (APC), 404
Batcache, 407
Memcached, 405
Redis, 406
selective, 408

multisite transients, 411
Transient API, 409–411

Varnish, 406
W3 Total Cache plugin, 81

can_export, 133
capabilities

custom post types (CPTs), 128
taxonomy, 140
user, 162

adding new, 165
checking, 163, 225
removing, 165

capability_type, 128
CDNs (content delivery networks), 394
checkUsername() function, 242
check_admin_referer() function, 233
check_ajax_referer() function, 235
Chrome Debug Bar, 379
Chrome Developer Tools Console, SSL error in,

353
/classes/_ directory, 61
closures, 196
CMS (content management system), WordPress

as, 4, 21
code examples from this book, xvii
Codex

Dashboard Widgets API page, 189
menu position values, 133
Rewrite API and WP_Rewrite class pages,

202
widgets page, 182

comment meta data, in wp_commentmeta table,
46

comments on posts, in wp_comments table, 42
community plugins, 82–94
compression, 394
content delivery networks (CDNs), 394
content sites, WordPress and, 8
content-focused web apps, 3
Contributor role, 162
cost advantages of WordPress for web app de‐

velopment, 6
CPTs (see customm post types)
CREATE TABLE statement, 68
create_empty_blog() function, 326
create_function() function, 183
cron jobs, 202–206

adding to an app, 202
PHP code for, 65
scheduling, 202
using server crons only, 206

crontab -e command, 205
cron_schedules hook, 203

Index | 419

www.it-ebooks.info

http://www.it-ebooks.info/

cross-site scripting attacks, 101
CSRF (cross-site request forgery) attacks, 231
CSS

device and display detection in, 115
files for an app plugin, 62
style.css file for themes, 106
using to show/hide menu items, 114
versioning files used in themes, 122

current_user_can() function, 163, 226
Custom Post Type UI plugin, 80, 135
custom post types (CPTs), 4, 125

custom wrapper classes for, 148–154
extending WP_Post vs. wrapping it, 150
keeping CPT functionality in wrapper

class, 152
keeping CPTs and taxonomies together,

151
making code easier to read, 154
reasons for using wrapper clases, 151

defining and registering, 126–135
in SchoolPress sample app, 16
metadata with, 145–148
themes and, 108
using in themes and plugins, 141–145

looping through CPTs, 142
theme archive and single template files,

142

D
dashboard

customizing users table in, 172
WordPress Multisite network, 312

dashboard widgets, 188
adding your own, 191
removing, 189

database caching, 393
database, WordPress

$wpdb class, 68
changing default tables prefix, 218
custom tables for performance optimization,

413
escaping in values passed to query() method,

71
Multisite network database, 315–318

individual site tables, 317
network-wide tables, 315
shared site tables, 318

structure of, 23–55
functions in /wp-includes/option.php, 24

functions in /wp-includes/pluggable.php
file, 27

wp_comments table, 42
wp_commentsmeta table, 46
wp_links table, 49
wp_options table, 23
wp_postmeta table, 38
wp_posts table, 34
wp_terms table, 50
wp_term_relationships table, 54
wp_term_taxonomy table, 53
wp_usermeta table, 30
wp_users table, 26

tables created by BuddyPress, 84
using custom tables, 68
wp_p2p and wp_p2pmeta tables, 80

datatypes, jQuery.ajax() output, 243
dbDelta() function, 68
db_version, 69
delete_blog_option() function, 325
delete_comment_meta() function, 48
delete_option() function, 25
delete_post_meta() function, 40
delete_user and deleted_User hooks, 162
delete_user_meta() function, 32
delete_with_user, 134
deleting users, 161
denial of service (DoS) attacks, 215
description (CPTs), 128
device capabilities, web apps, 3
device detection

in CSS, 115
in JavaScript, 116
in PHP, 118

directions, map, 290
directory structure, WordPress, 21

/wp-admim directory, 22
/wp-content directory, 22
/wp-content/plugins directory, 22
/wp-includes directory, 22
/wp/content/mu/plugins directory, 23
/wp/content/themes directory, 23
/wp/content/uploads directory, 23
root directory, 22

DISABLE_WP_CRON, 205
DISALLOW_FILE_EDIT, 218
displays, detection using CSS media queries, 115
Distance Matrix API, 291
distributed (source code), 58

420 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

do_action() function, 77
do_shortcode() function, 179
dynamic_sidebar() function, 187

E
Easy Digital Downloads plugin, 342
Eclipse, 281
ecommerce, 339–373

choosing a plugin, 339–342
digital downloads, 341
membership plugins, 341
shopping cart plugins, 339

installing SSL certificates on your server, 344
merchant accounts, 343
payment gateways, 342
setting up SaaS with Paid Memberships Pro,

355–373
SSL certificates and HTTPS, 344–355

avoiding SSL errors with nuclear option,
353

SSL on select pages, 349
SSL with Jigoshop, 347
SSL with Paid Memberships Pro, 346
WordPress frontend over SSL, 348
WordPress login and admin over SSL,

347
edge, 376

origin versus, 376
Editor role, 162

removing edit_pages capabilities, 165
_edit_link, 134
edit_user_profile, hooking into, 171
Elevation API, 291
email addresses

sanitizing, 230
validating and sanitizing, 231

endpoint mask constants, 202
escaping data, 227

while translating strings, 331
esc_attr() function, 101, 229
esc_html() function, 228
esc_js() function, 229
esc_sql() function, 71, 227
esc_textarea() function, 101, 229
esc_url() function, 228
esc_url_raw() function, 228
exclude_from_search (CPTs), 128
Exploit Scanner plugin, 224
extending WordPress, 55

external APIs, 287
Google Maps JavaScript API v3, 290

external IP address, 222
extract() function, 179

F
Facebook, 302–305

building an app, 304
leveraging existing plugin, 304
permissions, 303
pictures, 302
search, 302

feature detection in JavaScript, 117
File Header API, 209

adding file headers to your files, 211
file structure for an app plugin, 60–65

/adminpages/ directory, 61
/classes/ directory, 61
/css/ directory, 62
/images/ directory, 63
/js/ directory, 63
/scheduled/ directory, 65
/services/ directory, 65
main plugin file, 65

__FILE__, 239
filters

in plugins, 66
using in WordPress core, plugins, or themes,

78
using instead of settings page, 195
wp_default_styles, 107

flexibility of WordPress, 5
flexibility, importance of, 11
flush_rewrite_rules() function, 199
FORCE_SSL_ADMIN constant, 348, 349
FORCE_SSL_LOGIN constant, 348
forms

Gravity Forms plugin, 81
page template features for, 101

Foundation framework, 110
frameworks

importing into themes, 111
popular theme frameworks, 108

non-WP frameworks, 110
frontend pages added by plugins, 64
frontend.css files, 62
frontend.js files, 63
functions to register custom post types, 135

Index | 421

www.it-ebooks.info

http://www.it-ebooks.info/

functions.php file
for themes, 111
of the active theme, 108

G
Genesis theme framework, 110
Geocoding API, 291
__get() method, WP_User class, 157, 158, 167
get_blog_details() function, 321
get_blog_option() function, 324
get_blog_post() function, 325
get_blog_status() function, 323
get_browser() function, 121
get_comment() function, 42
get_comments() function, 43
get_comment_meta() function, 47
get_current_blog_id() function, 320
get_file_data() function, 211
get_locale() function, 336
get_object_taxonomies() function, 54
get_option() function, 24
get_plugin_data() function, 209
get_post() function, 35
get_posts() function, 36, 142
get_post_meta() function, 38
get_taxonomies() function, 53
get_taxonomy() function, 53
get_template_part() function, 103
get_term() function, 51
get_terms() function, 50
get_userdata() function, 28
get_user_by() function, 28
get_user_meta() function, 30, 157

looping through all meta data for a user, 158
GitHub, 287

SchoolPress source code, 15
global variables, 67

in wp-includes/vars.php, 119
using to store array of options for plugin or

app, 194
GNU General Public License, version 2

(GPLv2), 10, 58
gnuplot, 385
Google Maps JavaScript API v3, 290–294

creating a practical app, 291–294
Distance Matrix, 291
Elevation, 291
Geocoding, 291
Street View service, 291

Google Play, getting your Android app on, 285
Google Translate, 294
Google+, 294

activities, 295
comments, 295
moments, 295
people, 295

Gravity Forms plugin, 81
Gumby framework, 110
GZIP compression, 394

H
has_archive, 131
has_shortcode() function, 180
have_posts() function, 67
header.php file, 238
Heartbeat API, 246–251

JavaScript events triggered by, 247
speeding up or slowing down heartbeat, 250

heartbeat_received hook, 248
Hello Dolly plugin, 57
hidden fields in forms, 101
Hide Admin Bar from Non-Admins plugin, 174
hierarchical option

posts, 130
taxonomies, 139

hooks
action hooks, 77
admin_enqueue_scripts, 238
apply_filters(), 79
cron_schedules, 203
delete_user and deleted_User, 162
in custom profile field, 171
in plugins, 66
user_register, 161
using for settings, 194
using to copy page templates, 102
wp_dashboard_setup, 190, 193
wp_enqueue_scripts, 238
wp_network_dashboard_setup, 190

hosting, 394–408
rolling your own server, 395–408

Apache server setup, 396
Nginx in front of Apache, 400
Nginx server setup, 399

WordPress-specific hosts, 395
.htaccess file, 197, 221
HTML

detecting HTML5 features, 117

422 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

escaping, 228
validating and sanitizing with wp_kses()

function, 230
HTTPS, 344, 347

(see also SSL)
URLs, 352
using symlink for HTTPS directory, 344

I
/images/ directory, 63
Imagick, 288
importing data

frameworks and libraries into themes, 111
parent theme’s stylesheet to child themes,

111
WP All Import plugin, 82

/includes/ directory, 63
/includes/lib/directory, 64
includes/settings.php file, 194
index.php file, 98

rendering of custom post types, 108
init() method, CPT wrapper class, 152
INSERT queries, $wpdb command for, 74
interactive elements of web apps, 2
internationalization, 327
intervals, custom, for cron schedules, 203
iOS applications, 275–281

app distribution, 280
building your app with Xcode, 277

iOS simulator, 280
storyboards, 277
View Controller, 277

enrolling as Apple developer, 276
extending, 285
iOS resources, 280

iOS simulator, 280
IP addresses

blocking access for, 222
external IP address, 222

is_multisite() function, 320
is_ssl() function, 352
iThemes Security plugin, 221

J
Java, MainActivity.java file, 283
JavaScript, 5, 237

Backbone.js framework, 252
deciding where to put custom code, 239

device and feature detection, 116
enqueuing jQuery library, 238
enqueuing other libraries, 238
escaping strings in, 229
events triggered by Heartbeat API, 247
feature detection, 117
files for app plugin in /js/ directory, 63
Google Maps API, 290–294
heartbeat.js file, 247
in WordPress, 251
using to increase performance, 412–413
versioning files used in themes, 122

JavaScript Object Notation (see JSON)
Jigoshop ecommerce plugin, 340

SSL with, 347
jQuery, 237

AJAX calls with WordPress and, 240–244
and WordPress, 238
detecting window and screen sizes and other

inforomation about browsers, 116
feature detection, 118

jQuery(document).ready(), 242, 247
jQuery.ajax(), 242, 245
jQuery.bind(), 242
/js/ directory, 63
JSON (JavaScript Object Notation)

data returned from AJAX calls in Word‐
Press, 240

defined, 237
json_encode() and json_decode() functions, 237

L
label

custom post types (CPTs), 127
taxonomy, 138

labels array
for CPTs, 127
for taxonomies, 138

libraries
feature detection, 118
importing into themes, 111
third-party libraries for app plugin, 64

licensing
GNU General Public License, version 2

(GPLv2), 10
WordPress plugins, 58

Limit Login Attempts plugin, 225
link manager plugin, 49
links/blogroll manager UI, 49

Index | 423

www.it-ebooks.info

http://www.it-ebooks.info/

lname field in forms, 101
load_plugin_textdomain() function, 332, 335
load_template() function, 104
load_textdomain() function, 335
load_theme_textdomain() function, 335, 336
locale, 328
localization, 327
localizing WordPress apps, 327–338

creating and loading translation files, 331–
337
creating a .mo file, 335
creating a .po file, 334
file structure for localization, 332
generating a .pot file, 333
loading the textdomain, 335

defining your locale, 328
determining need for, 327
how it’s done in WordPress, 328
nonstring assets, 337–338
prepping strings with translation functions,

329
escaping and translating simultaneously,

331
Location meta box, creating, 291–294
login error messages, hiding, 220
logins, 3, 159

disallowing logins via wp-login.php, 221
plugins for protection of, 225
SSL logins in WordPress, 347
Theme My Login plugin, 174
WordPress Social Login plugin, 304

M
magic methods, 157
mail() function, 206
malware, protecting web applications against,

223
manage_users_columns filter, 172
manage_users_custom_column filter, 172
manage_users_sortable_columns filter, 173
map_meta_cap, 129
mashups, 3
MaxMind GeoIP, 288
media queries, 115
Members plugin, 81, 175
membership levels, SchoolPress sample app, 16
membership plugins, 341
Memcached, 405

menus, 113
dynamic, 114
navigation, 113
storing posts with information for, 126

menu_icon, 133
menu_name, 128
menu_position, 132
merchant accounts, 343
meta boxes

creating Location meta box, 291–294
default, removing from dashboard pages,

190
meta capabilities, 128
metadata, 38

(see also post meta)
with CPTs, 145–148
wp_usermeta table, 30

meta_key, 160
meta_value, querying wp_usermeta by, 160
Microsoft Sharepoint, 305
minifying, 393
.mo files, 335, 336
mobile apps, 275–286

Android applications, 281–285
activity_main.xml, 283
AndroidManifest.xml, 282
creating an APK file, 284
getting your app on Google Play, 285
MainActivity.java, 283

app wrapper, 275
AppPresser.com, 286
extending, 285
iOS applications, 275–281

app distribution, 280
building your app with Xcode, 277
enrolling as Apple developer, 276

use cases, 286
Modernizr.js library, 118
More Privacy Options plugin, 319
msg shortcode (example), 178
mu (must use) plugins directory, 23
Mullenweg, Matt, 8, 11
Multisite Global Search plugin, 319
multisite network dashboard, removing widgets,

190
Multisite networks (see WordPress Multisite

networks)
Multisite Robots.txt Manager plugin, 319
multisite transients, 411

424 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

MVC frameworks
controllers as template loader, 14
how MVC works, 12
models as plugins, 13
plugins for WordPress, 13
views as themes, 14

MySQL, 5
optimization, 400–403

MySQL Workbench, 219
MY_SITE_DOMAIN constant, 354

N
navigation menus, 113
nav_menu_css_class filter, 114
nested shortcodes, 179
.NET web applications, cost of building, 6
Nginx server

in front of Apache server, 400
setup, 399

nonces, 231
check_ajax_referer() function, 235
wp_create_nonce() function, 232
wp_nonce_field() function, 234
wp_nonce_url() function, 234
wp_verify_nonce() function, 232

note widget, 183
Nuclear Option, avoiding SSL errors with, 354

O
object caching, 393
object-cache.php, 404
offline work, 3
optimization and scaling, 375–416

bypassing WordPress, 415
custom tables, 413
definitions of terms, 375
hosting, 394–408
MySQL optimization, 400–403
origin versus edge, 376
selective caching, 408–412
testing, 377

using Apache Bench, 382–387
using Blitz.io, 389
using Chrome Debug Bar, 379
using Siege, 388
what to test, 377

using JavaScript for increased performance,
412–413

W3 Total Cache, 389–394
origin, 376

versus edge, 376
output buffering, 65, 144

P
P2P plugin, 80
padlocks, 344
page templates, 99–103

copying using hooks, 102
loading, 101
sample, 99
when to use for themes, 103

pages, 125
caching with W3 Total Cache, 391
mapping BuddyPress components to new or

existing pages, 90
SSL on, 349

/pages/ directory, 64
Paid Memberships Pro plugin, 9, 165, 174, 341

custom settings pages, 197
in SchoolPress sample app, 15
SaaS (software as a service), 355–373
SSL with, 346

passwords
encrypted, 222
examples of bad passwords, 217
examples of good passwords, 217
plugins for protection of, 225

payment gateways, 342
versus merchant accounts, 343

PayPal, 342
performance, 375

(see also optimization and scaling)
limitations of WordPress web apps, 11

permalink redirects, 198
permalink structure of a post, customizing, 130
permalink_epmask, 132
PHP, 5

classes in SchoolPress sample app, 17
device detection, 118
output buffering, functions for, 65
server-side, in Heartbeat API, 248
versus JavaScript in WordPress, 251

PHP libraries, 287
Imagick, 288
interacting with Twitter REST API, 301

php.ini file, 122
phpMyAdmin, 219

Index | 425

www.it-ebooks.info

http://www.it-ebooks.info/

plugins, WordPress, 4, 5, 57–94
/wp-content/plugins directory, 22
/wp/content/mu/plugins directory, 23
add-ons to existing plugins, 66
building your own, 59
community plugins, 82

BuddyPress, 82–94
criticisms concerning quality of, 9
favorites, 5
file headers, 209

adding, 212
file structure, 60–65
for custom settings pages, 197
for ecommerce, 339

digital downloads, 341
membership plugins, 341
shopping cart plugins, 339

for Multisite networks, 313, 318–319
for security, 221, 223

backup plugins, 224
login and password protection, 225
scanner plugins, 224
spam blocking plugins, 223

free plugins, 79
installing, 58
JavaScript code in, 239
licensing, 58
loop for displaying posts, 66
MVC framework models as plugins, 13
not allowing admins to edit, 218
plugin repository, 57
premium plugins, 81
themes versus, 95–97
user management, 174
using action hooks, 77
using custom database tables, 68
using custom post types and taxonomies,

141–145
using filters, 78
using global variables, 67

$wpdb, 68
using locate_template() in, 104

plugins_url() function, 239
plugin_locale filter, 336
PMPro Network plugin, 15
PMPro Register Helper plugin, 15, 168, 174
.po files, 334
post meta

functions for manipulation of, 38

storage in wp_postmeta table, 38
taxonomies versus, 135
with CPTs, 145–148

posts, 126
(see also custom post types)
custom post types and taxonomies, plugin

for, 80
default post types and custom post types,

125–126
attachments, 126
definition of posts, 125
navigation menu item, 126
revisions, 126

display by WordPress loop, 66
relating taxonomies to, 54
storage in wp_posts table, 34
themes and custom post types, 108

Posts 2 Posts plugin, 80
post_type_supports, 134
.pot file, 333
prepare() method, 227
pre_user_query filter, 173
primitive capabilities, 128

default, 129
profile fields

adding, 168–172
manually, 171

creating for BuddyPress, 92
public

post, 130
taxonomy, 139

publicly_queryable, 128

Q
query() method, escaping in values passed to, 71
query_var

post, 131
taxonomies, 139

R
Random.org, 217
Redis, 406
register_activation_hook() function, 202

functions adding new roles and capabilities,
165

register_deactivation_hook() function, 202
register_meta_box_cb, 132
register_nav_menu() function, 113

426 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

register_nav_menus() function, 113
register_post_type() function, 127–135

examples of registering custom post types,
134

register_sidebar() function, 186
register_taxonomy() function, 54, 137–141
register_taxonomy_for_object_type() function,

141
registration

adding fields to registration page, 168–172
PMPro Register Helper plugin, 174

remote procedure call (RPC), 255
(see also XML-RPC)

remove_cap() method, 165
remove_meta_box() function, 189
remove_role() function, 165
remove_shortcode() function, 180
REPLACE command (MySQL), 75
resizing page elements, 117
responsive design, 115

browser detection and, 122
browser detection in PHP’s get_browser(),

121
browser detection in WordPress core, 119
device and display detection in CSS, 115
device and feature detection in JavaScript,

116
device detection in PHP, 118

restore_current_blog() function, 321
Retina displays, 116
revisions, 126
rewrite

post, 130
taxonomy, 139

Rewrite API, 197–202
adding rewrite rules, 198
flushing rewrite rules, 199
other rewrite functions, 200

robots.txt files, 319
roles, 162

checking for a user, 163
creating custom roles, 164
in SchoolPress sample app, 16
Roles and Capabilities system, 4
upgrading Subscribers to Authors, 164

root directory (WordPress), 22

S
SaaS (software as a service), 355

setting up on Paid Memberships Pro, 356–
373

sanitize_email() function, 101, 230
sanitize_file_name() function, 230
sanitize_option() function, 229
sanitize_text_field() function, 101, 229
sanitize_title() function, 230
sanitize_user() function, 229
sanitizing data, 227
scalability, 376
scaling, 375

(see also optimization and scaling)
criticism of WordPress about, 8
defined, 375

scanner plugins, 224
/scheduled/ directory, 65
SchoolPress sample web app, xvii, 2

anatomy of, 15
business model, 15
classes as BuddyPress groups, 16
CPTs (custom post types), 16
main custom plugin, 17
membership levels and user roles, 16
multisite version of WordPress, 15
other custom plugins, 18
StartBox theme framework, 18

note widget, 183
screens

checking widths using CSS media query, 115
detecting size with JavaScript and jQuery,

116
search engine optimization (see SEO)
Secure Sockets Layer (see SSL)
security, 215–236

backing up everything, 222
criticisms of WordPress about, 9
frequent security updates for WordPress, 6
frequent updates of WordPress and plugins/

themes, 216
hardening your WordPress install, 218

adding custom .htaccess rules to lock
down wp-admin, 221

changing default database tables prefix,
218

hiding login error messages, 220
hiding WordPress version, 220
moving wp-config.php, 219

Index | 427

www.it-ebooks.info

http://www.it-ebooks.info/

not allowing admins to edit plugins or
themes, 218

not allowing logins via wp-login.php, 221
not using username admin, 216
plugins for, 223

backup plugins, 224
login and password protection, 225
scanner plugins, 224
spam blocking plugins, 223

scanning or monitoring for attacks, 223
using strong password, 217
writing secure code, 225

checking user capabilities, 225
custom SQL statements, 226
data validation, sanitation, and escaping,

227
nonces, 231

SELECT queries, $wpdb object methods for, 73
SEO (search engine optimization), 5

All in One SEO Pack plugin, 79
theme development and, 97

servers
detection in WordPress core, 120
kicking off cron jobs from web server, 204
rolling your own, 395–408
sending email from, 208
URL rewriting systems, 197

/services/ directory, 65
__set() method, WP_User class, 158
settings

configuring BuddyPress settings, 91
for Multisite networks, 314

Settings API, 193–197
deciding if you really need a settings page,

194
ignoring standards when adding settings,

196
using hook or filter instead of settings page,

194
using standards when adding settings, 196

set_transient() function, 411
Sharepoint, 305
shopping cart plugins, 339
shortcodes, 177–181

attributes, 178
creating, with attributes and enclosed con‐

tent, 178
nested, 179
other useful functions for, 180

removing, 180
using in widgets, 182

shortcode_atts() function, 178
shortcode_parse_atts() function, 181
show_admin_column, 140
show_in_admin_bar, 134
show_in_menu, 133
show_in_nav_menus, 133

taxonomy, 140
show_tagcloud, 140
show_ui

custom post type (CPT), 132
taxonomy, 140

show_user_profile, hooking into, 171
sidebars, 187

(see also widgets)
embedding widget outside of dynamic side‐

bar, 188
Siege, 388
single events, scheduling, 204
single.php file, 108

creating for registered CPTs, 142
site_url() function, 354
slug-name.php file, 104
SMS messages, 304
software as as service (see SaaS)
source code, distributed, 58
spam blocking plugins, 223
sp_assignments_dashboard_widget() function,

193
sp_assignments_dashboard_widget_configura‐

tion() function, 193
sp_manage_users_custom_column() function,

173
sp_stub, 65
SQL (Structured Query Language)

CREATE TABLE statement, 68
updating existing table nemes in database

with new prefix, 219
writing custom statements, 226

SQL clients, 219
SQL injection attacks, 218
SSL (Secure Sockets Layer), 344

avoiding SSL errors, 353
installing SSL certificate on your server, 344
on select pages, 349
with Jigoshop, 347
with Paid Memberships Pro, 346
WordPress frontend over SSL, 348

428 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress login and admin over SSL, 347
StartBox theme framework, 109

creating child theme, 111
in SchoolPress app, 18

State of WordPress presentation (Mullenweg), 8
Street View Service API, 291
Stripe, 342
strip_shortcodes() function, 181
strong passwords, 217
str_replace() function, 353
style.css file, 98

for themes, 106
child themes, 111
versioning, 106

styling, 187
(see also CSS; themes)
for widgets and titles, 187

subdirectories, 310
subdomains, 310

setting up, 311
SUBDOMAIN_INSTALL, 310
Subscriber role, 162

upgrading to Author, 164
Sucuri, 223
Super Admin role, 162, 312
supports array (CPTs), 131
switch_to_blog() function, 320
symlinks, 344

T
Tag Cloud Widget, taxonomy’s inclusion in, 140
task focus in web apps, 2
taxonomies, 135–141

creating custom taxonomies, 137
register_taxonomy() function, 137–141
register_taxonomy_for_object_type()

function, 141
custom post type (CPT), 132
custom, plugin for, 80
defined, 135
keeping together with CPTs, 151
relating taxonomy terms to posts, 54
terms and, 50
using custom taxonomies in themes and

plugins, 141–145
versus post meta, 135
wp-term_taxonomy table, 53

Template Hierarchy, 14, 97
documentation, 99

template loader, MVC controllers versus, 14
templates

locating in plugins, 104
page templates, 99–103

template_content function, 103
terms, 50, 136

wp_term_relationships table, 54
text widgets, 181

uses of, 182
<textarea> element, encoding text for, 229
Theme My Login, 174
themes, 95–124

/wp/content/themes directory, 23
and custom post types, 108
creating child theme for StartBox, 111
embedding widget area into, 187
embedding widget directly into using

the_widget(), 188
file header information, getting, 210
files containing the WordPress loop, 67
for WordPress Multisite networks, 313
functions for, 103

using locate_template() in your plugins,
104

functions.php file, 108
including Bootstrap in app’s theme, 111
JavaScript code in, 239
JavaScript files supporting, 63
licensing, 58
menus, 113

dynamic menus, 114
navigation menus, 113

MVC views and, 14
not allowing admins to edit, 218
page templates, 99–103

using hooks to copy templates, 102
when to use theme template, 103

registering sidebar for, 186
responsive design, 115

browser detection in PHP’s get_brows‐
er(), 121

browser detection in WordPress core,
119

device and display detection in CSS, 115
device and feature detection in Java‐

Script, 116
device detection in PHP, 118

StartBox theme framework in SchoolPress
app, 18

Index | 429

www.it-ebooks.info

http://www.it-ebooks.info/

style.css file, 106
versioning, 106

template hierarchy, 97
theme frameworks, 108

Genesis, 110
non-WP frameworks, 110
StartBox, 109
_s, 109

using custom post types and taxonomies in,
141–145
theme archive and single template files,

142
versioning CSS and JS files, 122
versus plugins, 95–97

when developing apps, 95
when developing plugins, 96
when developing themes, 97

the_content filter, 179
the_post() function, 67
the_widget() function, 188
transients, 409–412

multisite, 411
translate() function, 329
translation files, creating and loading, 331–337
translation functions, 329
Twenty Thirteen theme, 187
Twenty Twelve theme, 99
Twilio, 304
Twitter REST API v1.1, 299–302

leveraging a PHP library, 301
twitteroauth library, 301

U
UI frameworks, 110
UIViewController class, 277
UIWebview class, 277
UPDATE queries, 75
updates, managing for Multisite networks, 315
update_blog_details() function, 323
update_blog_option() function, 324
update_blog_status() function, 323
update_comment_meta() function, 47
update_count_callback, 139
update_option() function, 24
update_post_meta() function, 38, 137
update_user_meta() function, 30, 160
updating users, 159
uploads, /wp/content/uploads directory, 23
URL rewriting (see Rewrite API)

URLs
adding nonces to, 234
escaping, 228
for AJAX queries, 240
plugins_url() function, 239

user agent strings, 118
User class (see WP_User class)
user management, 4, 155

adding registration and profile fields, 168–
172

adding, updating, and deleting users, 158
customizing users table in dashboard, 172
getting user data, 156
hooks and filters, 161
plugins for, 174
roles and capabilities, 162

checking, 163, 225
WordPress Multisite networks, 312

user meta
accessing in wp_usermeta table, 157
updating, 160

user roles (see roles)
usernames

admin username, not using, 216
sanitizing, 229

users
extending WP_User class, 166
not trusting, 227

user_can() function, 163, 225
user_login, 159
user_register, 161

V
validation of data, 227

email addresses, 231
wp_kses() function, 230

Varnish, 406
VaultPress plugin, 224
versions

hiding your WordPress version, 220
updating for WordPress and plugins, 216

ViewController.h file, 277
ViewController.m file, 278

W
W3 Total Cache, 389

CDNs (content delivery networks), 394
database caching, 393

430 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

GZIP compression, 394
minifying, 393
object cache, 393
Page Cache settings, 391

W3 Total Cache plugin, 81
web apps

defined, 1
features of, 2
scanning or monitoring for attacks, 223

web services, 287
MaxMind GeoIP, 288
Microsoft SharePoint, 305
other popular web services, 307

websites
defined, 1
typical progression for lean startup running

on WordPress, 5
WHERE clause, UPDATE statement, 75
widgets, 181–193

adding, 182
defining a widget area, 186
embedding widget outside of dynamic

sidebar, 188
checking out existing widgets, 182
dashboard, 188

adding your own, 191
removing, 189

windows, browser, detecting size of, 116
WooCommerce plugin, 340

custom settings pages, 197
WordPress

anatomy of a WordPress app, 15–19
as application framework, 11

MVC frameworks versus, 12
building web apps with, 1

reasons to use WordPress, 3
responses to common criticisms, 7
when not to use WordPress, 10

cost of building web applications, .NET ver‐
sus, 6

database structure, 23–55
directory structure, 21–23
JavaScript and PHP in, 251
jQuery, 238
limitations with asynchronous processing,

251
optimization and scaling (see optimization

and scaling)
plugin repository, 57

theme frameworks, 109
WordPress MU Domain Mapping plugin, 318
WordPress Multisite networks, 309–326

basic functionality, 319–326
$blog_id, 319
add_user_to_blog(), 325
create_empty_blog(), 326
delete_blog_option(), 325
get_blog_details(), 321
get_blog_option(), 324
get_blog_post(), 325
get_blog_status(), 323
get_current_blog_id(), 320
is_multisite(), 320
restore_current_blog(), 321
switch_to_blog(), 320
update_blog_details(), 323
update_blog_option(), 324
update_blog_status(), 323

database structure, 315–318
individual site tables, 317
network-wide tables, 315
shared site tables, 318

managing, 311
dashboard, 312
plugins, 313
settings, 314
sites, 312
themes, 313
updates, 315
users, 312

plugins, 318–319
setting up a network, 310

WordPress Social Login, 304
work, offline, 3
WP Admin plugin, 221
WP All Import plugin, 82
WP Mail, 206–208

sending nicer emails with, 207
WP Security Scan plugin, 224
wp-admin directory, 22

locking down, 221
wp-config.php file, 22

moving for security reasons, 219
/wp-content directory, 22
/wp-content/plugins directory, 22
WP-Cron, 202–206

kicking off cron jobs from the server, 204
schduling single events, 204

Index | 431

www.it-ebooks.info

http://www.it-ebooks.info/

using server crons only, 206
wp-cron.php file, 205
WP-Doc plugin, 195
/wp-includes directory, 22
/wp-includes/comment.php file, functions in,

42, 47
/wp-includes/option.php file, functions in, 24
/wp-includes/pluggable.php file, 27
/wp-includes/post.php file, 34, 38
/wp-includes/taxonomy.php file, functions in,

50, 53
wp-includes/vars.php file, 119
wp-login.php file, 174

(see also logins)
not allowing logins via, 221

/wp/content/mu/plugins directory, 23
/wp/content/themes directory, 23
/wp/content/uploads directory, 23
wpdoc_caps, 195
wpdoc_template_redirect() function, 195
wpmu_delete_user() function, 161
wp_add_dashboard_widget() function, 191
WP_ALLOW_MULTISITE, 310
wp_blog_versions table, 316
wp_comments table, 42

functions for interactions with, 42
wp_commentsmeta table, 46

functions for interactions with, 47
wp_create_user() function, 27
wp_dashboard_setup, 190, 193
wp_default_styles action, 123
wp_default_styles filter, 107
wp_deleteComment() function, 269
wp_deletePost() function, 260
wp_deleteTerm() function, 263
wp_delete_post() function, 36
wp_delete_term() function, 52
wp_delete_user() function, 28, 161
wp_editComment() function, 270
wp_editPost() function, 259
wp_editProfile() function, 266
wp_editTerm() function, 263
wp_email filter, 207
wp_enqueue_script() function, 238
wp_enqueue_scripts hook, 238
wp_enqueue_style() function, 106

media query in, 115
wp_getComment() function, 268
wp_getCommentCount() function, 266

wp_getComments() function, 269
wp_getMediaItem() function, 271
wp_getMediaLibrary() function, 271
wp_getOptions() function, 267
wp_getPageTemplates() function, 267
wp_getPost() function, 257
wp_getPostFormats() function, 273
wp_getPosts() function, 256
wp_getPostTypes() function, 273
wp_getProfile() function, 265
wp_getTaxonomies() function, 263
wp_getTaxonomy() function, 264
wp_getTerm() function, 261
wp_getTerms() function, 261
wp_getUser() function, 265
wp_getUsers() function, 264
wp_getUsersBlogs() function, 255
wp_get_object_terms() function, 54
wp_get_theme() function, 210
wp_head hook, 238
wp_insert_comment function, 44
wp_insert_post() function, 35
wp_insert_term() function, 52
wp_insert_user() function, 27, 159
wp_is_mobile() function, 120
wp_kses() function, 230
wp_links table, 49
wp_mail() function, 206

sending nicer emails, 207
wp_mail_content_type filter, 207
wp_mail_from filter, 207
wp_mail_from_name filter, 207
wp_nav_menu() function, 113
wp_network_dashboard_setup, 190
wp_newComment() function, 270
wp_newMediaObject() function, 272
wp_newPost() function, 259
wp_newTerm() function, 262
wp_nonce_field() function, 234
wp_nonce_url() function, 234
wp_options table, 23

functions for interactions with, 24
wp_user_roles option, 165

wp_p2p table, 80
wp_p2pmeta table, 80
WP_Post class, 148

(see also custom post types; posts)
extending versus wrapping, 150

432 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

wp_postmeta table, 38, 136
functions for interactions with, 38

wp_posts table, 34
limiting number of revisions stored in, 126

WP_POST_REVISIONS, 126
WP_Query class, 36, 142
wp_registration_log table, 316
WP_Rewrite class, 202
wp_schedule_event() function, 202

intervals, 203
wp_schedule_single_event() function, 204
wp_setOptions() function, 267
wp_set_object_terms() function, 55
wp_signon() function, 159
wp_signups table, 316
wp_site table, 317
wp_sitemeta table, 317
wp_specialchars() function, 228
wp_terms table, 50, 136

functions for interactions with, 50
wp_terms_relationships table, 136
wp_terms_taxonomy table, 136
wp_term_relationships table, 54
wp_term_taxonomy table, 53
wp_update_comment() function, 44
wp_update_post() function, 35
wp_update_term() function, 52
wp_update_user() function, 28, 159
WP_User class, 28

extending, 166
Teacher and Student classes, 166–168

getting a WP_User object to work with, 156
getting user data from WP_User object, 156
using overloaded properties or __get() mag‐

ic method, 157
wp_usermeta table, 30, 318

accessing data stored in, 157
functions for interactions with, 30
storing arrays in, different methods, 160

wp_users table, 26
accessing data stored in, 157
demonstration of functions interacting with,

29
wp_user_roles option, 165
wp_verify_nonce() function, 232
WP_Widget class, 182
wp_xmlrpc_server class, 255, 274

wrapper classes for CPTs, 148–154
extending WP_Post vs. wrapping it, 150
keeping CPT functionality together, 152
keeping CPTs and taxonomies together, 151
making code easier to read, 154
reasons for using, 151

WYSIWYG editor, 4

X
Xcode, 277–280

iOS simulator, 280
storyboards, 277
View Controller, 277

XML-RPC, 255–274, 285
wp_deleteComment() function, 269
wp_deletePost() function, 260
wp_deleteTerm() function, 263
wp_editComment() function, 270
wp_editPost() function, 259
wp_editProfile() function, 266
wp_editTerm() function, 263
wp_getComment() function, 268
wp_getCommentCount() function, 266
wp_getComments() function, 269
wp_getMediaItem() function, 271
wp_getMediaLibrary() function, 271
wp_getOptions() function, 267
wp_getPageTemplates() function, 267
wp_getPost() function, 257
wp_getPostFormats() function, 273
wp_getPosts() function, 256
wp_getPostTypes() function, 273
wp_getProfile() function, 265
wp_getTaxonomies() function, 263
wp_getTaxonomy() function, 264
wp_getTerm() function, 261
wp_getTerms() function, 261
wp_getUser() function, 265
wp_getUsers() function, 264
wp_getUsersBlogs() function, 255
wp_newComment() function, 270
wp_newMediaObject() function, 272
wp_newPost() function, 259
wp_newTerm() function, 262
wp_setOptions() function, 267

Index | 433

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Brian Messenlehner is the cofounder of WebDevStudios.com, a WordPress develop‐
ment shop. Brian is also the cofounder of AppPresser, a mobile application framework
for WordPress. Since he comes from a background of building large-scale web appli‐
cations for the US Marine Corps, he has always looked at utilizing WordPress for more
than a blogging system or basic CMS. Brian and the team at WDS have built several
nontraditional websites using WordPress as an application framework. Brian enjoys
learning about new technology and believes open source software like WordPress is the
key to successful, cost-effective web solutions in any situation. You can find Brian on
Twitter @bmess.

Jason Coleman is the CEO of Stranger Studios and lead developer of Paid Memberships
Pro, a membership platform for WordPress. He has been developing applications in
PHP and on top of WordPress for over five years. Jason enjoys helping his customers
GET PAID through Paid Memberships Pro, enabling them to start new businesses and
expand current ones. You can find Jason at http://therealjasoncoleman.com or on Twitter
@jason_coleman.

Colophon
The animal on the cover of Building Web Apps with Wordpress is a common iguana
(Iguana iguana). This reptile is native to Central and South America, and its range
encompasses parts of Mexico and extends all the way down to southern Brazil. There
are also populations in South Florida, Hawaii, and the Rio Grande Valley in Texas that
arose from the escape or disposal of captive individuals. In some South American
countries, iguana eggs are sold as a novelty food; they are boiled in salt and can fetch
twice the price of a chicken egg.

The word iguana is derived from the language of the Taíno people, who called the lizard
iwana. Despite being commonly known as the green iguana, this species can be many
different colors, depending on their area of origin. In the more southern countries of
their range, iguanas appear more bluish in color, with bright blue markings. On islands
like Aruba and Grenada, their skin can be lavender or black; individuals from the west‐
ern side of Costa Rica are red, and Mexican iguanas tend to be a light orange.

Iguanas are excellent climbers and can fall for about 50 feet without being hurt. Their
strong back legs and claws allow them to grasp branches and make long leaps from tree
to tree. As well as being at home in the canopy, iguanas are natural swimmers who use
their powerful tails to propel them through the water. Their tails are also used as weapons
to protect the iguanas from predators or to incapacitate a rival. If the tail gets caught in
something, the iguana will allow it to break in order to escape; a new tail eventually
grows out to replace the old one.

www.it-ebooks.info

http://therealjasoncoleman.com
http://www.it-ebooks.info/

Because of their dramatic looks and laid-back nature, green iguanas are popular pets.
However, they require specialized care, and it is sadly very common for iguanas to be
abandoned or disposed of because an owner could not provide the correct environment.
They need to be provided with varied leafy vegetables and access to fresh water, and
should be kept at a constant temperature of 79°F and given access to UVA and UVB
lighting. An iguana can live up to 20 years if cared for properly, so the decision to keep
one as a pet should be given much consideration.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What You’ll Learn
	About the Code
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Foreword
	Chapter 1. Building Web Apps with WordPress
	What Is a Website?
	What Is an App?
	What Is a Web App?
	Features of a Web App

	Why Use WordPress?
	You Are Already Using WordPress
	Content Management Is Easy with WordPress
	User Management Is Easy and Secure with WordPress
	Plugins
	Flexibility Is Important
	Frequent Security Updates
	Cost
	.NET App
	WordPress App
	Responses to Some Common Criticisms of WordPress

	When Not to Use WordPress
	You Plan to License or Sell Your Site’s Technology
	There Is Another Platform That Will Get You “There” Faster
	Flexibility Is NOT Important to You
	Your App Needs to Be Highly Real Time

	WordPress as an Application Framework
	WordPress Versus MVC Frameworks

	Anatomy of a WordPress App
	What Is SchoolPress?
	SchoolPress Runs on a WordPress Multisite Network
	The SchoolPress Business Model
	Membership Levels and User Roles
	Classes Are BuddyPress Groups
	Assignments Are a Custom Post Type
	Submissions Are a (Sub)CPT for Assignments
	Semesters Are a Taxonomy on the Class CPT
	Departments Are a Taxonomy on the Class CPT
	SchoolPress Has One Main Custom Plugin
	SchoolPress Uses a Few Other Custom Plugins
	SchoolPress Uses the StartBox Theme Framework

	Chapter 2. WordPress Basics
	WordPress Directory Structure
	Root Directory
	/wp-admin
	/wp-includes
	/wp-content

	WordPress Database Structure
	wp_options
	Functions Found in /wp-includes/option.php
	wp_users
	Functions Found in /wp-includes/…
	wp_usermeta
	wp_posts
	Functions found in /wp-includes/post.php
	wp_postmeta
	Functions Found in /wp-includes/post.php
	wp_comments
	Functions Found in /wp-includes/comment.php
	wp_commentsmeta
	Functions Found in /wp-includes/comment.php
	wp_links
	wp_terms
	Functions Found in /wp-includes/taxonomy.php
	wp_term_taxonomy
	/wp-includes/taxonomy.php
	wp_term_relationships

	Extending WordPress

	Chapter 3. Leveraging WordPress Plugins
	The GPLv2 License
	Installing WordPress Plugins
	Building Your Own Plugin
	File Structure for an App Plugin
	/adminpages/
	/classes/
	/css/
	/js/
	/images/
	/includes/
	/includes/lib/
	/pages/
	/services/
	/scheduled/
	/schoolpress.php

	Add-Ons to Existing Plugins
	Use Cases and Examples
	The WordPress Loop
	WordPress Global Variables
	Action Hooks
	Filters

	Free Plugins
	All in One SEO Pack
	BadgeOS
	Custom Post Type UI
	Posts 2 Posts
	Members
	W3 Total Cache

	Premium Plugins
	Gravity Forms
	Backup Buddy
	WP All Import

	Community Plugins
	BuddyPress

	Chapter 4. Themes
	Themes Versus Plugins
	When Developing Apps
	When Developing Plugins
	When Developing Themes

	The Template Hierarchy
	Page Templates
	Sample Page Template
	Using Hooks to Copy Templates
	When to Use a Theme Template

	Theme-Related WP Functions
	Using locate_template in Your Plugins

	Style.css
	Versioning Your Theme’s CSS Files

	Functions.php
	Themes and Custom Post Types
	Popular Theme Frameworks
	WP Theme Frameworks
	Non-WP Theme Frameworks

	Creating a Child Theme for StartBox
	Including Bootstrap in Your App’s Theme
	Menus
	Nav Menus
	Dynamic Menus

	Responsive Design
	Device and Display Detection in CSS
	Device and Feature Detection in JavaScript
	Device Detection in PHP
	Final Note on Browser Detection

	Versioning CSS and JS Files

	Chapter 5. Custom Post Types, Post Metadata, and Taxonomies
	Default Post Types and Custom Post Types
	Page
	Post
	Attachment
	Revisions
	Nav Menu Item

	Defining and Registering Custom Post Types
	register_post_type($post_type, $args);

	What Is a Taxonomy and How Should I Use It?
	Taxonomies Versus Post Meta
	Creating Custom Taxonomies
	register_taxonomy($taxonomy, $object_type, $args)
	register_taxonomy_for_object_type($taxonomy, $object_type)

	Using Custom Post Types and Taxonomies in Your Themes and Plugins
	The Theme Archive and Single Template Files
	Good Old WP_Query and get_posts()

	Metadata with CPTs
	add_meta_box($id, $title, $callback, $screen, $context, $priority, $callback_args)

	Custom Wrapper Classes for CPTs
	Extending WP_Post Versus Wrapping It
	Why Use Wrapper Classes?
	Keep Your CPTs and Taxonomies Together
	Keep It in the Wrapper Class
	Wrapper Classes Read Better

	Chapter 6. Users, Roles, and Capabilities
	Getting User Data
	Add, Update, and Delete Users
	Hooks and Filters
	What Are Roles and Capabilities?
	Checking a User’s Role and Capabilities
	Creating Custom Roles and Capabilities

	Extending the WP_User Class
	Adding Registration and Profile Fields
	Customizing the Users Table in the Dashboard
	Plugins
	Theme My Login
	Hide Admin Bar from Non-Admins
	Paid Memberships Pro
	PMPro Register Helper
	Members

	Chapter 7. Other WordPress APIs, Objects, and Helper Functions
	Shortcode API
	Shortcode Attributes
	Nested Shortcodes
	Removing Shortcodes
	Other Useful Shortcode-Related Functions

	Widgets API
	Before You Add Your Own Widget
	Adding Widgets
	Defining a Widget Area
	Embedding a Widget Outside of a Dynamic Sidebar

	Dashboard Widgets API
	Removing Dashboard Widgets
	Adding Your Own Dashboard Widget

	Settings API
	Do You Really Need a Settings Page?
	Could You Use a Hook or Filter Instead?
	Use Standards When Adding Settings
	Ignore Standards When Adding Settings

	Rewrite API
	Adding Rewrite Rules
	Flushing Rewrite Rules
	Other Rewrite Functions

	WP-Cron
	Adding Custom Intervals
	Scheduling Single Events
	Kicking Off Cron Jobs from the Server
	Using Server Crons Only

	WP Mail
	Sending Nicer Emails with WordPress

	File Header API
	Adding File Headers to Your Own Files
	Adding New Headers to Plugins and Themes

	Chapter 8. Secure WordPress
	Why It’s Important
	Security Basics
	Update Frequently
	Don’t Use the Username “admin”
	Use a Strong Password
	Examples of Bad Passwords
	Examples of Good Passwords

	Hardening Your WordPress Install
	Don’t Allow Admins to Edit Plugins or Themes
	Change Default Database Tables Prefix
	Move wp-config.php
	Hide Login Error Messages
	Hide Your WordPress Version
	Don’t Allow Logins via wp-login.php
	Add Custom .htaccess Rules for Locking Down wp-admin

	Backup Everything!
	Scan Scan Scan!
	Useful Security Plugins
	Spam-Blocking Plugins
	Backup Plugins
	Scanner Plugins
	Login and Password-Protection Plugins

	Writing Secure Code
	Check User Capabilities
	Custom SQL Statements
	Data Validation, Sanitization, and Escaping
	Nonces

	Chapter 9. JavaScript, jQuery, and AJAX
	What Is AJAX?
	What Is JSON?
	jQuery and WordPress
	Enqueuing Other JavaScript Libraries
	Where to Put Your Custom JavaScript

	AJAX Calls with WordPress and jQuery
	Managing Multiple AJAX Requests
	Heartbeat API
	Initialization
	Client-side JavaScript
	Server-side PHP
	Initialization
	Client-side JavaScript
	Server-side PHP

	WordPress Limitations with Asynchronous Processing
	Backbone.js

	Chapter 10. XML-RPC
	wp.getUsersBlogs
	wp.getPosts
	wp.getPost
	wp.newPost
	wp.editPost
	wp.deletePost
	wp.getTerms
	wp.getTerm
	wp.newTerm
	wp.editTerm
	wp.deleteTerm
	wp.getTaxonomies
	wp.getTaxonomy
	wp.getUsers
	wp.getUser
	wp.getProfile
	wp.editProfile
	wp.getCommentCount
	wp.getPageTemplates
	wp.getOptions
	wp.setOptions
	wp.getComment
	wp.getComments
	wp.deleteComment
	wp.editComment
	wp.newComment
	wp.getMediaLibrary
	wp.getMediaItem
	wp.uploadFile
	wp.getPostFormats
	wp.getPostType
	wp.getPostTypes

	Chapter 11. Mobile Apps with WordPress
	App Wrapper
	iOS Applications
	Enrolling as an Apple Developer
	Building Your App with Xcode
	App Distribution
	iOS Resources

	Android Applications
	AndroidManifest.xml
	activity_main.xml
	Creating an APK file
	Getting Your App on Google Play
	Android Resources

	Extend Your App
	AppPresser
	Mobile App Use Cases

	Chapter 12. PHP Libraries, External APIs, and Web Services
	Imagick
	MaxMind GeoIP
	Google Maps JavaScript API v3
	Directions
	Distance Matrix
	Elevation
	Geocoding
	Street View Service
	Practical App

	Google Translate
	Google+
	People
	Activities
	Comments
	Moments

	Amazon Product Advertising API
	Request Parameters
	Operations
	Response Groups

	Twitter REST API v1.1
	Set Up Your App on Twitter.com
	Leverage a PHP Library

	Facebook
	Pictures
	Search
	Permissions
	Building an Application
	Leverage What’s Out There

	Twilio
	Microsoft Sharepoint
	We Missed a Few

	Chapter 13. Building WordPress Multisite Networks
	Why Multisite?
	Setting Up a Multisite Network
	Managing a Multisite Network
	Dashboard
	Sites
	Users
	Themes
	Plugins
	Settings
	Updates

	Multisite Database Structure
	Network-Wide Tables
	Individual Site Tables
	Shared Site Tables

	Multisite Plugins
	WordPress MU Domain Mapping
	Blog Copier
	More Privacy Options
	Multisite Global Search
	Multisite Robots.txt Manager

	Basic Multisite Functionality
	$blog_id
	is_multisite()
	get_current_blog_id()
	switch_to_blog($new_blog)
	restore_current_blog()
	get_blog_details($fields = null, $get_all = true)
	update_blog_details($blog_id, $details = array())
	get_blog_status($id, $pref)
	update_blog_status($blog_id, $pref, $value)
	get_blog_option($id, $option, $default = false)
	update_blog_option($id, $option, $value)
	delete_blog_option($id, $option)
	get_blog_post($blog_id, $post_id)
	add_user_to_blog($blog_id, $user_id, $role)
	create_empty_blog($domain, $path, $weblog_title, $site_id = 1)
	Functions We Didn’t Mention

	Chapter 14. Localizing WordPress Apps
	Do You Even Need to Localize Your App?
	How Localization Is Done in WordPress
	Defining Your Locale in WordPress
	Prepping Your Strings with Translation Functions
	__($text, $domain = “default”)
	_e($text, $domain = “default”)
	_x($text, $context, $domain = “default”)
	_ex($title, $context, $domain = “default”)
	Escaping and Translating at the Same Time

	Creating and Loading Translation Files
	Our File Structure for Localization
	Generating a .pot File
	Creating a .po File
	Creating a .mo File
	Loading the Textdomain

	Localizing Nonstring Assets

	Chapter 15. Ecommerce
	Choosing a Plugin
	Shopping Cart Plugins
	Membership Plugins
	Digital Downloads

	Payment Gateways
	Merchant Accounts
	SSL Certificates and HTTPS
	Installing an SSL Certificate on Your Server
	SSL with Paid Memberships Pro
	SSL with Jigoshop
	WordPress Login and WordPress Admin over SSL
	WordPress Frontend over SSL
	SSL on Select Pages
	Avoiding SSL Errors with the “Nuclear Option”

	Setting Up Software as a Service (SaaS) with Paid Memberships Pro
	The Software as a Service Model
	Step 0: Figure Out How You Want to Charge for Your App
	Step 1: Installing and Activating Paid Memberships Pro
	Step 2: Setting Up the Level
	Step 3: Setting Up Pages
	Step 4: Payment Settings
	Step 5: Email Settings
	Step 6: Advanced Settings
	Step 7: Locking Down Pages
	Step 8: Customizing Paid Memberships Pro

	Chapter 16. WordPress Optimization and Scaling
	Terms
	Origin Versus Edge
	Testing
	What to Test
	Chrome Debug Bar
	Apache Bench
	Siege
	Blitz.io

	W3 Total Cache
	Page Cache Settings
	Minify
	Database Caching
	Object Cache
	CDNs
	GZIP Compression

	Hosting
	WordPress-Specific Hosts
	Rolling Your Own Server

	Selective Caching
	The Transient API
	Multisite Transients

	Using JavaScript to Increase Performance
	Custom Tables
	Bypassing WordPress

	Index
	About the Authors

