O'REILLY"

Brian Messenlehner
& Jason Coleman
Foreword by Brad Williams

www.it-ebooks.info

http://www.it-ebooks.info/

O'REILLY"

Building Web Apps with WordPress

WordPress is much more than a blogging platform. As this practical guide
clearly demonstrates, you can use WordPress to build web apps of any
type—not mere content sites, but full-blown apps for specific tasks. If you
have PHP experience with a smattering of HTML, CSS, and JavaScript,
you'll learn how to use WordPress plugins and themes to develop fast,
scalable, and secure web apps, native mobile apps, web services, and even
a network of multiple WordPress sites.

The authors use examples from their recently released SchoolPress app to
explain concepts and techniques throughout the book. All code examples
are available on GitHub.

m Compare WordPress with traditional app development
frameworks

m Use themes for views, and plugins for backend functionality

Get suggestions for choosing WordPress plugins—or build
your own

Manage user accounts and roles, and access user data

Build asynchronous behaviors in your app with jQuery

Develop native apps for iOS and Android, using wrappers
Incorporate PHP libraries, external APIs, and web service plugins

Collect payments through ecommerce and membership
plugins

m Use techniques to speed up and scale your WordPress app

Brian Messenlehner comes from a background of building custom web
applications for the US Marine Corps, and is the co-founder of WebDevStudios,
a WordPress-only development shop. He and his team at WDS build non-
traditional websites and mobile applications.

Jason Coleman has pushed WordPress to its limits for years, and helped launch
several startups using WordPress as an application framework. He now leads
development for Paid Memberships Pro, a membership-focused ecommerce
plugin that powers many software-as-a-service companies.

“WordPress is more
than just software, it’s
a movement that is
becoming the de facto
operating system of
the Web. More than
just a blog or a CMS,
when you learn how to
use WordPress as an
application platform
you'll be at the forefront
of the third wave of its
growth.”

—Matt Mullenweg
Co-Founder of WordPress

“Brian and Jason have
grown side by side with
WordPress for years, and
successfully demonstrate
how, for the right kind
of app, developers can
leverage that engine to
build more secure, more
performant applications
in half the time.”

—Jake Goldman
President & Founder of 10up

WEB DEVELOPMENT

US $34.99 CAN $36.99
ISBN: 978-1-449-36407-6
JUELERER T

www.it-ebooks.info

Twitter: @oreillymedia
facebook.com/oreilly

http://www.it-ebooks.info/

Building Web Apps with
WordPress

Brian Messenlehner and Jason Coleman

Beijing + Cambridge - Farnham - Kdln - Sebastopol + Tokyo [KOAR{=|MN4

www.it-ebooks.info

http://www.it-ebooks.info/

Building Web Apps with WordPress

by Brian Messenlehner and Jason Coleman

Copyright © 2014 Brian Messenlehner and Jason Coleman. All rights reserved.

Printed in the United States of America.

Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Allyson MacDonald Indexer: Ellen Troutman

Production Editor: Nicole Shelby Cover Designer: Randy Comer
Copyeditor: Charles Roumeliotis Interior Designer: David Futato
Proofreader: Amanda Kersey lllustrator: Rebecca Demarest
April 2014: First Edition

Revision History for the First Edition:
2014-04-07: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449364076 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Building Web Apps with WordPress, the picture of a common iguana, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36407-6
[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449364076
http://www.it-ebooks.info/

Table of Contents

o 1= - T« T
0] (=3 (R

1. Building Web Apps with WordPress...........covvviiiiiiiiiiniennnnnn.

What Is a Website?
What Is an App?
What Is a Web App?
Features of a Web App
Why Use WordPress?
You Are Already Using WordPress
Content Management Is Easy with WordPress
User Management Is Easy and Secure with WordPress
Plugins
Flexibility Is Important
Frequent Security Updates
Cost
.NET App
WordPress App
Responses to Some Common Criticisms of WordPress
When Not to Use WordPress
You Plan to License or Sell Your Site’s Technology
There Is Another Platform That Will Get You “There” Faster
Flexibility Is NOT Important to You
Your App Needs to Be Highly Real Time
WordPress as an Application Framework
WordPress Versus MVC Frameworks
Anatomy of a WordPress App
What Is SchoolPress?
SchoolPress Runs on a WordPress Multisite Network

NN G s s W= =

e e et e e el
Ul Ul U N~ == O O O N

www.it-ebooks.info

http://www.it-ebooks.info/

2. WordPress Basics

. Leveraging WordPress Plugins
The GPLv2 License

The SchoolPress Business Model

Membership Levels and User Roles

Classes Are BuddyPress Groups

Assignments Are a Custom Post Type
Submissions Are a (Sub)CPT for Assignments
Semesters Are a Taxonomy on the Class CPT
Departments Are a Taxonomy on the Class CPT
SchoolPress Has One Main Custom Plugin
SchoolPress Uses a Few Other Custom Plugins
SchoolPress Uses the StartBox Theme Framework

WordPress Directory Structure
Root Directory

/wp-admin

/wp-includes

/wp-content

WordPress Database Structure

wp_options

Functions Found in /wp-includes/option.php
wp_users

Functions Found in /wp-includes/...
wp_usermeta

Wp_posts

Functions found in /wp-includes/post.php
wp_postmeta

Functions Found in /wp-includes/post.php
wp_comments

Functions Found in /wp-includes/comment.php
wp_commentsmeta

Functions Found in /wp-includes/comment.php
wp_links

wp_terms

Functions Found in /wp-includes/taxonomy.php
wp_term_taxonomy
/wp-includes/taxonomy.php
wp_term_relationships

Extending WordPress

Installing WordPress Plugins

15
16
16
16
17
17
17
17
18
18

21
21
22
22
22
22
23
23
24
26
27
30
34
34
38
38
42
42
46
47
49
50
50
53
53
54
55

57
58
58

Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

Building Your Own Plugin 59
File Structure for an App Plugin 60
/adminpages/ 61
/classes/ 61
[css/ 62
/js/ 63
/images/ 63
/includes/ 63
/includes/lib/ 64
/pages/ 64
/services/ 65
/scheduled/ 65
/schoolpress.php 65
Add-Ons to Existing Plugins 66
Use Cases and Examples 66
The WordPress Loop 66
WordPress Global Variables 67
Action Hooks 77
Filters 77
Free Plugins 79
All in One SEO Pack 79
BadgeOS 79
Custom Post Type Ul 80
Posts 2 Posts 80
Members 81
W3 Total Cache 81
Premium Plugins 81
Gravity Forms 81
Backup Buddy 81
WP All Import 82
Community Plugins 82
BuddyPress 82
CTheMES. .. 95
Themes Versus Plugins 95
When Developing Apps 95
When Developing Plugins 96
When Developing Themes 97
The Template Hierarchy 97
Page Templates 99
Sample Page Template 99
Using Hooks to Copy Templates 102
Table of Contents | v

http://www.it-ebooks.info/

When to Use a Theme Template
Theme-Related WP Functions

Using locate_template in Your Plugins
Style.css

Versioning Your Theme’s CSS Files
Functions.php
Themes and Custom Post Types
Popular Theme Frameworks

WP Theme Frameworks

Non-WP Theme Frameworks
Creating a Child Theme for StartBox
Including Bootstrap in Your App’s Theme
Menus

Nav Menus

Dynamic Menus
Responsive Design

Device and Display Detection in CSS

Device and Feature Detection in JavaScript

Device Detection in PHP

Final Note on Browser Detection
Versioning CSS and JS Files

. Custom Post Types, Post Metadata, and Taxonomies.ccuunee

Default Post Types and Custom Post Types
Page
Post
Attachment
Revisions
Nav Menu Item
Defining and Registering Custom Post Types
register_post_type($post_type, $args);
What Is a Taxonomy and How Should I Use It?
Taxonomies Versus Post Meta
Creating Custom Taxonomies
register_taxonomy($taxonomy, $object_type, $args)
register_taxonomy_for_object_type($taxonomy, $object_type)
Using Custom Post Types and Taxonomies in Your Themes and Plugins
The Theme Archive and Single Template Files
Good Old WP_Query and get_posts()
Metadata with CPTs
add_meta_box($id, $title, $callback, $screen, $context, $priority,
$callback_args)

103
103
104
106
106
108
108
108
109
110
111
111
113
113
114
115
115
116
118
122
122

125
125
125
125
126
126
126
126
127
135
135
137
137
141
141
142
142
145

146

vi

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Wrapper Classes for CPTs
Extending WP_Post Versus Wrapping It
Why Use Wrapper Classes?

Keep Your CPTs and Taxonomies Together
Keep It in the Wrapper Class
Wrapper Classes Read Better

. Users, Roles, and Capabilities.cooeiiiiiiiiiiiiiiiiiiii s,
Getting User Data
Add, Update, and Delete Users
Hooks and Filters
What Are Roles and Capabilities?
Checking a User’s Role and Capabilities
Creating Custom Roles and Capabilities
Extending the WP_User Class
Adding Registration and Profile Fields
Customizing the Users Table in the Dashboard
Plugins
Theme My Login
Hide Admin Bar from Non-Admins
Paid Memberships Pro
PMPro Register Helper
Members

. Other WordPress APIs, Objects, and Helper Functions...........................
Shortcode API

Shortcode Attributes

Nested Shortcodes

Removing Shortcodes

Other Useful Shortcode-Related Functions
Widgets API

Before You Add Your Own Widget

Adding Widgets

Defining a Widget Area

Embedding a Widget Outside of a Dynamic Sidebar
Dashboard Widgets API

Removing Dashboard Widgets

Adding Your Own Dashboard Widget
Settings API

Do You Really Need a Settings Page?

Could You Use a Hook or Filter Instead?

Use Standards When Adding Settings

148
150
151
151
152
154

155
156
158
161
162
163
164
166
168
172
174
174
174
174
174
175

177
177
178
179
180
180
181
182
182
186
188
188
189
191
193
194
194
196

Table of Contents

www.it-ebooks.info

vii

http://www.it-ebooks.info/

Ignore Standards When Adding Settings 196

Rewrite API 197
Adding Rewrite Rules 198
Flushing Rewrite Rules 199
Other Rewrite Functions 200

WP-Cron 202
Adding Custom Intervals 203
Scheduling Single Events 204
Kicking Off Cron Jobs from the Server 204
Using Server Crons Only 206

WP Mail 206
Sending Nicer Emails with WordPress 207

File Header API 209
Adding File Headers to Your Own Files 211
Adding New Headers to Plugins and Themes 212

8. Secure WordPress.oooiiiiiiiiiii i 215

Why It’s Important 215

Security Basics 216
Update Frequently 216
Don’t Use the Username “admin” 216
Use a Strong Password 217
Examples of Bad Passwords 217
Examples of Good Passwords 218

Hardening Your WordPress Install 218
Don’t Allow Admins to Edit Plugins or Themes 218
Change Default Database Tables Prefix 218
Move wp-config.php 219
Hide Login Error Messages 220
Hide Your WordPress Version 220
Don't Allow Logins via wp-login.php 221
Add Custom .htaccess Rules for Locking Down wp-admin 221

Backup Everything! 222

Scan Scan Scan! 223

Useful Security Plugins 223
Spam-Blocking Plugins 223
Backup Plugins 224
Scanner Plugins 224
Login and Password-Protection Plugins 225

Writing Secure Code 225
Check User Capabilities 225
Custom SQL Statements 226

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

9. JavaScript, jQuery, and AJAX

10.

Data Validation, Sanitization, and Escaping

Nonces

What Is AJAX?
What Is JSON?
jQuery and WordPress

Enqueuing Other JavaScript Libraries

Where to Put Your Custom JavaScript
AJAX Calls with WordPress and jQuery
Managing Multiple AJAX Requests

Heartbeat API
Initialization
Client-side JavaScript
Server-side PHP
Initialization
Client-side JavaScript
Server-side PHP

WordPress Limitations with Asynchronous Processing

Backbone.js

XMLRPC. oot i e

wp.getUsersBlogs
wp.getPosts
wp.getPost
wp.newPost
wp.editPost
wp.deletePost
wp.getTerms
wp.getTerm
wp.newTerm
wp.editTerm
wp.deleteTerm
wp.getTaxonomies
wp.getTaxonomy
wp.getUsers
wp.getUser
wp.getProfile
wp.editProfile
wp.getCommentCount
wp.getPageTemplates
wp.getOptions

227
231

237
237
237
238
238
239
240
244
246
246
247
248
248
249
250
251
251

255
255
256
257
259
259
260
261
261
262
263
263
263
264
264
265
265
266
266
267
267

www.it-ebooks.info

Table of Contents

| ix

http://www.it-ebooks.info/

1.

12.

wp.setOptions
wp.getComment
wp.getComments
wp.deleteComment
wp.editComment
wp.newComment
wp.getMediaLibrary
wp.getMedialtem
wp.uploadFile
wp.getPostFormats
wp.getPostType
wp.getPostTypes

Mobile Apps with WordPress.ccovviiiiiiiiinnnne...

App Wrapper

iOS Applications
Enrolling as an Apple Developer
Building Your App with Xcode
App Distribution
iOS Resources

Android Applications
AndroidManifest.xml
activity_main.xml
Creating an APK file
Getting Your App on Google Play
Android Resources

Extend Your App

AppPresser

Mobile App Use Cases

PHP Libraries, External APIs, and Web Services....................

Imagick

MaxMind GeolP

Google Maps JavaScript API v3
Directions
Distance Matrix
Elevation
Geocoding
Street View Service
Practical App

Google Translate

Google+

267
268
269
269
270
270
271
271
272
273
273
273

275
275
275
276
277
280
280
281
282
283
284
285
285
285
286
286

287
288
288
290
290
291
291
291
291
291
294
294

X

Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

People 295

Activities 295
Comments 295
Moments 295
Amazon Product Advertising API 295
Request Parameters 296
Operations 296
Response Groups 297
Twitter REST API v1.1 299
Set Up Your App on Twitter.com 300
Leverage a PHP Library 301
Facebook 302
Pictures 302
Search 302
Permissions 303
Building an Application 304
Leverage What’s Out There 304
Twilio 304
Microsoft Sharepoint 305
We Missed a Few 307
. Building WordPress Multisite Networks.oovviviiiiiiiiiiniiinnnens, 309
Why Multisite? 309
Setting Up a Multisite Network 310
Managing a Multisite Network 311
Dashboard 312
Sites 312
Users 312
Themes 313
Plugins 313
Settings 314
Updates 315
Multisite Database Structure 315
Network-Wide Tables 315
Individual Site Tables 317
Shared Site Tables 318
Multisite Plugins 318
WordPress MU Domain Mapping 318
Blog Copier 319
More Privacy Options 319
Multisite Global Search 319
Multisite Robots.txt Manager 319
Table of Contents | xi

www.it-ebooks.info

http://www.it-ebooks.info/

14.

15.

Basic Multisite Functionality
$blog_id
is_multisite()
get_current_blog_id()
switch_to_blog($new_blog)
restore_current_blog()
get_blog_details($fields = null, $get_all = true)
update_blog_details($blog id, $details = array())
get_blog_status($id, $pref)
update_blog_status($blog_id, $pref, $value)
get_blog_option($id, $option, $default = false)
update_blog_option($id, $option, $value)
delete_blog_option($id, $option)
get_blog_post($blog_id, $post_id)
add_user_to_blog($blog_id, $user_id, $role)
create_empty_blog($domain, $path, $weblog _title, $site_id =1
Functions We Didn’'t Mention

Localizing WordPress Apps. oveveerieerereneeenneenneeeneeenenenns

Do You Even Need to Localize Your App?
How Localization Is Done in WordPress
Defining Your Locale in WordPress
Prepping Your Strings with Translation Functions
__($text, $domain = “default”)
_e($text, $domain = “default”)
_x($text, $context, $domain = “default”)
_ex($title, $context, $domain = “default”)
Escaping and Translating at the Same Time
Creating and Loading Translation Files
Our File Structure for Localization
Generating a .pot File
Creating a .po File
Creating a .mo File
Loading the Textdomain
Localizing Nonstring Assets

10 11111 T (-3 A

Choosing a Plugin
Shopping Cart Plugins
Membership Plugins
Digital Downloads

Payment Gateways

319
319
320
320
320
321
321
323
323
323
324
324
325
325
325
326
326

327
327
328
328
329
329
329
330
331
331
331
332
333
334
335
335
337

339
339
339
341
341
342

Xii

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Merchant Accounts 343
SSL Certificates and HTTPS 344
Installing an SSL Certificate on Your Server 344
SSL with Paid Memberships Pro 346
SSL with Jigoshop 347
WordPress Login and WordPress Admin over SSL 347
WordPress Frontend over SSL 348
SSL on Select Pages 349
Avoiding SSL Errors with the “Nuclear Option” 353
Setting Up Software as a Service (SaaS) with Paid Memberships Pro 355
The Software as a Service Model 355
Step 0: Figure Out How You Want to Charge for Your App 355
Step 1: Installing and Activating Paid Memberships Pro 356
Step 2: Setting Up the Level 357
Step 3: Setting Up Pages 359
Step 4: Payment Settings 360
Step 5: Email Settings 361
Step 6: Advanced Settings 362
Step 7: Locking Down Pages 363
Step 8: Customizing Paid Memberships Pro 365
16. WordPress Optimizationand Scaling.............covviiiiiiiiiiiiiiiniinnnen. 375
Terms 375
Origin Versus Edge 376
Testing 377
What to Test 377
Chrome Debug Bar 379
Apache Bench 382
Siege 388
Blitz.io 389
W3 Total Cache 389
Page Cache Settings 391
Minify 393
Database Caching 393
Object Cache 393
CDNs 394
GZIP Compression 394
Hosting 394
WordPress-Specific Hosts 395
Rolling Your Own Server 395
Selective Caching 408
The Transient API 408
Table of Contents | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Multisite Transients 411

Using JavaScript to Increase Performance 412
Custom Tables 413
Bypassing WordPress 415
1T a7
xiv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

As we write this, WordPress powers 20% of the Internet, and that number is growing.
Many developers want to do more with their WordPress sites but feel that they need to
jump ship to a more traditional application framework like Ruby on Rails, Yii, Zend, or
Codeigniter to build “real” web apps. This sentiment is wrong, and we’re here to fix it.

Despite starting out as a blogging platform and currently existing primarily as a content
management system, WordPress has grown into a flexible and capable platform for
building web apps. This book will show you how to use WordPress as an application
framework to build any web app, large or small.

Who This Book Is For

This book will be most useful for WordPress developers looking to work on heavier
applications and PHP developers with some WordPress experience looking for a PHP-
based application framework.

Commercial plugin and theme developers, or anyone working on large distributed
WordPress projects, will also find the concepts and techniques of this book useful.

If you are a PHP or language-agnostic developer using another framework and jealous
of the large library of WordPress plugins and themes, you may be surprised to learn
how well WordPress can work as a general application framework. Reading and applying
the lessons in this book could change your work life for the better.

We assume that readers have an intermediate understanding of general PHP program-
ming. You should also have a basic understanding of HTML and CSS, and familiarity
with MySQL and SQL queries. Basic understanding of JavaScript and jQuery program-
ming will help with the JavaScript and AJAX chapter and related examples.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

Who This Book Is Not For

This book is not for people who want to learn how to use WordPress as an end user.
There will be brief introductions to standard WordPress functionality, but we assume
that readers have already experienced WordPress from a user’s perspective.

Thisbook is not meant for nonprogrammers. While it is possible to build very functional
web applications by simply combining and configuring the many plugins available for
WordPress, this book is written for developers building their own plugins and themes
to power new web apps.

This book will not teach you how to program but will teach you how to program “the
WordPress way.”

What You'll Learn

Our hope with this book is that you will learn the programming and organizational
techniques and best practices for developing complex applications using WordPress.

Chapter 1 defines what we mean by “web app” and also covers why or why not to use
WordPress for building web apps and how to compare WordPress to other application
frameworks. We also introduce SchoolPress, the WordPress app that we use as an ex-
ample throughout the book.

Chapter 2 covers the basics of WordPress. We go over the various directories of the core
WordPress install and what goes where. We also explain each database table created by
WordPress, what data each holds, and which WordPress functions map to those tables.
Even experienced WordPress developers can learn something from this chapter and are
encouraged to read it.

Chapter 3 is all about plugins. What are they? How do you make your own plugins?
How should you structure your apps main plugin? When should you leverage third-
party plugins or roll your own?

Chapter 4 is all about themes. How do themes works? How do themes map to views in
a typical model-view-controller (MVC) framework? What code should go into your
theme, and what code should go into plugins? We also cover using theme frameworks
and UI frameworks and the basics of responsive design.

Chapter 5 covers custom post types and taxonomies. We go over the default post types
built into WordPress, why you might need to build your own, and then how to go about
doing that. We also cover post meta and taxonomies, what each is appropriate for, and
how to build custom taxonomies and map them to your post types. Finally, we show
how to build wrapper classes for your post types to organize your code utilizing object-
oriented programming (OOP).

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 covers users, roles, and capabilities. We show how to add, update, and delete
users programmatically, and how to work with user meta, roles, and capabilities. We
also show how to extend the WP_User class for your user archetypes like “customers”
and “teachers” to better organize your code using OOP techniques.

Chapter 7 covers a few of the more useful WordPress APIs and helper functions that
didn’t fit into the rest of the book but are still important for developers building web
apps with WordPress.

Chapter 8 is all about securing your WordPress apps, plugins, and themes.

Chapter 9 covers using JavaScript and AJAX in your WordPress application. We go over
the correct way to enqueue JavaScript into WordPress and how to build asynchronous
behaviors in your app.

Chapter 10 covers the XML-RPC API for WordPress and how to use it to integrate
WordPress with outside apps.

Chapter 11 covers how to use WordPress to power native apps on mobile devices by
creating app wrappers for iOS and Android.

Chapter 12 covers some third-party PHP libraries, services, and APIs that are often used
in web apps and how to integrate them with WordPress.

Chapter 13 covers WordPress multisite networks, including how to set them up and
things to keep in mind when developing for multisite.

Chapter 14 covers localizing your WordPress plugins and themes, including how to
prep your code for translation and how to create and use translation files.

Chapter 15 covers ecommerce. We go over the various types of ecommerce plugins
available and how to choose between them. We then go into detail on how to use Word-
Press to handle payments and account management for software as a service (SaaS) web

apps.

Chapter 16 covers how to optimize and scale WordPress for high-volume web apps. We
go over how to test the performance of your WordPress app and the most popular
techniques for speeding up and scaling sites running WordPress.

About the Code

All examples in this book can be found at https://github.com/bwawwp. Please note that
these code examples were written to most clearly convey the concepts we cover in the
book. To improve readability, we often ignored best practices for security and localiza-
tion (which we cover in Chapter 8 and Chapter 14 of this book) or ignored certain edge
cases. You will want to keep this in mind before using any examples in production code.

Preface | xvii

www.it-ebooks.info

https://github.com/bwawwp
http://www.it-ebooks.info/

The sample app SchoolPress can be found at http://schoolpress.me, with any open
sourced code for that site available at https://github.com/bwawwp/schoolpress.

Conventions Used in This Book

The following typographical conventions are used in this book:

Ttalic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, datatypes, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

xviii | Preface

www.it-ebooks.info

http://schoolpress.me
https://github.com/bwawwp/schoolpress
http://www.it-ebooks.info/

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Web Apps with WordPress by Brian
Messenlehner and Jason Coleman (O’Reilly). Copyright 2014 Brian Messenlehner and
Jason Coleman, 978-1-449-36407-6"

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that
Safa Pl delivers expert content in both book and video form from
BooksOntine the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional information.
You can access this page at http://oreil.ly/building-apps-wp.

To comment or ask technical questions about this book, send email to con
tact@bwawwp.com.

Preface | xix

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/building-apps-wp
mailto:contact@bwawwp.com
mailto:contact@bwawwp.com
http://www.it-ebooks.info/

For more information about our book and online examples see our website at http://
bwawwp.com.

Find us on Facebook: http://facebook.com/bwawwp
Follow us on Twitter: http://twitter.com/bwawwp

Follow us on Instagram: http://instagram.com/bwawwp

Acknowledgments

Thanks to Jason Coleman and Matt Mullenweg; I could not have written this book
without them. I would like to thank Meghan Blanchette and Allyson MacDonald for
staying on top of things at O’Reilly Media, and thanks to our technical reviewers. I am
thankful of my wife and best friend, Robin Messenlehner, and my children Dalya, Brian
Jr., and Nina Messenlehner, for supporting me and my efforts to write this book. I would
also like to acknowledge my business partners and friends Brad Williams, Lisa Sabin-
Wilson, and the entire WebDevStudios.com team for building the best WordPress de-
velopment and design shop on earth! And last but not least, I love you, Mom!

— Brian Messenlehner

Thanks to my coauthor Brian for asking me to write this book with him. Thanks to our
editors Meghan and Allyson for keeping us on track and helping us to stay true to our
original vision. Thanks to our great technical editors Peter MacIntyre and Pippin Wil-
liamson for reviewing our code and writing and providing valuable feedback. Thanks
to Frederick Townes for his feedback and contributions to our chapter on optimization
and scaling. Thanks to everyone in the WordPress community who answered all of my
random tweets and may or may not have known they were helping me to write this
book. Thanks to my wife, Kim, for supporting me as always during yet another adven-
ture in our life. Thanks to my daughter, Marin, for missing me when I was away to write,
and my son, Isaac, for constantly asking me if I had “finished the book yet.” Last but not
least, thanks to my family who have always supported my writing: Mom, Dad, Jeremy,
and Nana Men are all excited to be the first nonprogrammers to read Building Web Apps
with WordPress.

— Jason Coleman

xx | Preface

www.it-ebooks.info

http://bwawwp.com
http://bwawwp.com
http://facebook.com/bwawwp
http://twitter.com/bwawwp
http://instagram.com/bwawwp
http://www.it-ebooks.info/

Foreword

The web is evolving and WordPress is no different. What started out as a blogging
platform has grown into a powerful content management system that powers more
websites on the internet today than any other platform. WordPress is endlessly flexible,
allowing you to build any type of application you can dream of. Whether it’s a native
mobile app for locating a local business or an e-commerce desktop app with member-
ship capabilities, WordPress has the ability not only to power these apps, but to drasti-
cally reduce the development time to do so.

Brian and Jason are leading the charge in changing how we think about app develop-
ment. Their knowledge and experience will help guide you through the process of
building powerful web applications using the internet’s most popular development
framework, WordPress.

The future of the internet is web apps and WordPress is making it easier than ever to
create that future. Code on!

— Brad Williams, Co-Founder of WebDevStudios

XXi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
Building Web Apps with WordPress

Let’s start by defining what a web app is and how it differs from a website or a web
service.

In reality, this book will help you build anything with WordPress: websites, themes,
plugins, web services, and web apps. We chose to focus on web apps because they can
be seen as super websites that make use of all of the techniques we’ll cover.

There are many people who believe that WordPress isn’t powerful enough or meant for
building web apps, and we’ll get into that more later. We've been building web apps with
WordPress for many years and know that it absolutely is possible to build scalable ap-
plications using WordPress.

In this chapter, we’ll cover why WordPress is a great framework for building web apps.
We'll also cover some situations where using WordPress wouldn’t be the best way to
build your web app.

What Is a Website?

You know what a website is. A website is a set of one or more web pages, containing
information, accessed via a web browser.

What Is an App?

We like the Wikipedia definition: “Application software, also known as an application
or an app, is computer software designed to help the user to perform specific tasks”

What Is a Web App?

A web app is just an app run through a web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Please note that with some web apps, the browser technology is hidden, for example,
when integrating your web app into a native Android or iOS app, running a website as
an application in Google Chrome, or running an app using Adobe AIR. However, on
the inside of these applications is still a system parsing HTML, CSS, and JavaScript.

You can also think of a web app as a website, plus more application-like stuff.

There is no exact line where a website becomes a web app. It’s one of those things where
you know it when you see it.

What we can do is explain some of the features of a web app, give you some examples,
and then try to come up with a shorthand definition so you know generally what we
are talking about as we use the term throughout the book.

You will see references to SchoolPress while reading this book.
SchoolPress is a web application we are building to help schools and
educators manage their students and curricula. All of the code ex-
amples are geared toward functionality that may exist in School-
Press. We will talk more about the overall concept of SchoolPress later
in this chapter.

Features of a Web App

The following are some features generally associated with web apps and applications in
general. The more of these features present in a website, the more appropriate it is to
upgrade its label to a web app.!

Interactive elements
A typical website experience involves navigating through page loads, scrolling, and
clicking hyperlinks. Web apps can have links and scrolling as well, but will tend to
use other methods of navigating through the app.

Websites with forms offer transactional experiences. An example would be a contact
form on a website or an application form on the careers page of a company website.
Forms allow users to interact with a site using something more than a click.

Web apps will have even more interactive UI elements. Examples include toolbars,
drag and drop elements, rich text editors, and sliders.

Tasks rather than content
Remember, web apps are “designed to help the user to perform specific tasks”
Google Maps users get driving directions. Gmail users write emails. Trello users
manage lists. SchoolPress users comment on class discussions.

1. Many of the ideas in this section are influenced by these blog posts: “What is a Web Application?” by Dom-
inique Hazaél-Massieux and “What is a Web Application?” by Bob Baxley.

2 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://bit.ly/wiawa
http://bit.ly/wiawa
http://bit.ly/wiawa2
http://www.it-ebooks.info/

Some apps are still content focused. A typical session with a Facebook or Twitter
app involves about 90% reading. However, the apps themselves present a way of
browsing content different from the typical web browsing experience.

Logins
Logins and accounts allow a web app to save information about its users. This
information is used to facilitate the main tasks of the app and enable a persistent
experience. When logged in, SchoolPress users can see which discussions are un-
read. They also have a username that identifies their activity within the app.

Web apps can also have tiers of users. SchoolPress will have admins controlling the
inner workings of the app, teachers setting up classes, and students participating in
class discussions.

Device capabilities
Web apps running on your phone can access your camera, your address book,
internal storage, and GPS location information. Web apps running on the desktop
may access a webcam or a local hard drive. The same web app may respond differ-
ently depending on the device accessing it. Web apps will adjust to different screen
sizes, resolutions, and capabilities.

Work offline
Whenever possible, it’s a good idea to make your web apps work offline. Sure, the
interactivity of the Internet is what defines that “web” part of web app, but a site
that doesn’t stop working when someone drives through a tunnel will feel more like

an app.

Emails can be drafted offline in Gmail. Evernote will allow you to create and edit
notes offline and sync them to the Internet when connectivity comes back.

Mashups
Web apps can tie one or more web apps together. A web app can utilize various web
services and APIs to push and pull data. You could have a web app that pulls
location-based information like longitude and latitude from Twitter and Four-
square and posts it to a Google Map.

Why Use WordPress?

No single programming language or software tool will be right for every job. We'll cover
why you may not want to use WordPress in a bit, but for now, let’s go over some situations
where using WordPress to build your web app would be a good choice.

Why Use WordPress? | 3

www.it-ebooks.info

http://www.it-ebooks.info/

You Are Already Using WordPress

If you are already using WordPress for your main site, you might just be a quick plugin
away from adding the functionality you need. WordPress has great plugins for ecom-
merce (Jigoshop), forums (bbPress), membership sites (Paid Memberships Pro), social
networking functionality (BuddyPress), and gamification (BadgeOS).

Building your app into your existing WordPress site will save you time and make things
easier on your users. So if your application is fairly straightforward, you can create a
custom plugin on your WordPress site to program the functionality of your web app.

If you are happy with WordPress for your existing site, don’t be confused if people say
that you need to upgrade to something else to add certain functionality to your site. It’s
probably not true. You don’t have to throw out all of the work you've done on WordPress
already, and all of the following are great reasons to stick with WordPress.

Content Management Is Easy with WordPress

WordPress was developed first as a blogging platform, but through the years and with
the introduction of custom post types (CPTs) in version 3.0, it has evolved into a fully
functional content management system (CMS). Any page or post can be edited by ad-
ministrators via the dashboard, which can be accessed through your web browser. You
will learn about working with CPTs in Chapter 5.

WordPress makes adding and editing content easy via a WYSIWYG editor, so you don’t
have to use web designers every time you want to make a simple change to your site.
You can also create custom menus and navigation elements for your site without touch-
ing any code.

If your web app focuses around bits of content (e.g., our SchoolPress app is focused on
assignments and discussions), the Custom Post Types API for WordPress (covered in
Chapter 5) makes it easy to quickly set up and manage this custom content.

Even apps that are more task oriented will typically have a few pages for information,
documentation, and sales. Using WordPress for your app will give you one place to
manage your app and all of your content.

User Management Is Easy and Secure with WordPress

WordPress has everything you need for adding both admin users and end users to your
site.

In addition to controlling access to content, the Roles and Capabilities system in Word-
Press is extensible and allows you to control what actions are available for certain groups
of users. For example, by default, users with the contributor role can add new posts, but

4 | Chapter 1:Building Weh Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

can’t publish them. Similarly, you can create new roles and capabilities to manage who
has access to your custom functionality.

Plugins like Paid Memberships Pro can be used to extend the built-in user management
to allow you to designate members of different levels and control what content users
have access to. For example, you can create a level to give paying members access to
premium content on your WordPress site.

Plugins

There are over 27,000 free plugins in the WordPress repository. There are many more
plugins, both free and premium, on various sites around the Internet. When you have
an idea for an extension to your website, there is a good chance that there’s a plugin for
that, which will save you time and money.

There are a handful of indispensable plugins that we end up using on almost every site
and web application we build.

For most websites you create, you'll want to cache output for faster browsing, use tools
like Google Analytics for visitor tracking, create sitemaps, and tweak page settings for
search engine optimization (SEO), along with a number of other common tasks.

There are many well-supported plugins for all of these functions. We suggest our fa-
vorites throughout this book; you can find a list of them on this book’s website.

Flexibility Is Important

WordPress is a full-blown framework capable of many things. Additionally, WordPress
is built on PHP, JavaScript, and MySQL technology, so anything you can build in PHP/
MySQL (which is pretty much anything) can be bolted into your WordPress application
easily enough.

WordPress and PHP/MySQL in general aren’t perfect for every task, but they are well
suited for a wide range of tasks. Having one platform that will grow with your business
can allow you to execute and pivot faster.

For example, here is a typical progression for the website of a lean startup running on
WordPress:

Announce your startup with a one-page website.
Add a form to gather email addresses.

Add a blog.

Focus on SEO and optimize all content.

Push blog posts to Twitter and Facebook.

Add forums.

A

Why Use WordPress? | 5

www.it-ebooks.info

http://wordpress.org/plugins/
http://bwawwp.com/plugins/
http://www.it-ebooks.info/

7. Use the Paid Memberships Pro plugin to allow members to pay for access.
8. Add custom forms, tools, and application behaviors for paying members.
9. Update the UI using AJAX.

10. Tweak the site and server to scale.

11. Localize the site/app for different countries and languages.

12. Launch iOS and Android wrappers for the app.

The neat thing about moving through the path is that at every step along the way, you
have the same database of users and are using the same development platform.

Frequent Security Updates

The fact that WordPress is used on millions of sites makes it a target for hackers trying
to break through its security. Some of those hackers have been successful in the past;
however, the developers behind WordPress are quick to address vulnerabilities and
release updates to fix them. It’s like having millions of people constantly testing and
fixing your software, because that’s exactly what is happening.

The underlying architecture of WordPress makes applying these updates a quick and
painless process that even novice web users can perform. If you are smart about how
you set up WordPress and upgrade to the latest versions when they become available,
WordPress is a far more secure platform for your site than anything else available. Se-
curity is discussed in more detail in Chapter 8.

Cost

WordPress is free. PHP is free. MySQL is free. Most plugins are free. Hosting costs
money. But depending on how big your web application is and how much traffic you
get, it can be relatively inexpensive. If you require custom functionality not found in
any existing plugins, you may need to pay a developer to build it. Orif you are a developer
yourself, it will cost you some time.

Let’s compare building a simple web application on top of WordPress to building a
simple NET web application from scratch:

.NET App

1. TIS — Pay for License

2. SQL Server — Pay for License

3. .NET developers typically cost more than PHP developers.
4

. Pay to construct a solid database schema.

6 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Pay to create helper functions for moving data in and out of your database.
Pay to create a login process for your users.

Pay to develop any custom functionality you require.

®© N R W

Security! You have no idea how your app will hold up against the Internet, but you're
going to pay to try to make your app as secure as possible.

WordPress App

1. Apache — $0

2. MySQL — $0

3. PHP developers typically cost less than .NET developers and are way cooler! This
is a fact.

4. WordPress has a proven database schema and is ready to go.

5. WordPress has a ton of helper functions for interacting with the database, and in
most cases you can utilize CPTs and taxonomies to store and categorize your data
without much code.

6. WordPress already has a solid login process.

7. You can gain most functionality you require from free third-party plugins. If any
custom development is required, it would only be for niche functionality that
doesn’t already exist.

8. Security! WordPress is running on about 20% of all websites on the Internet. You
can bet that it is one of the securest platforms (don’t make your admin password
“password”).

In short, you can build any size application on top of WordPress and nine times out of
10, it will cost less money and take less time to develop than on any other platform.

Responses to Some Common Criticisms of WordPress

There are some highly vocal critics of WordPress who will say that WordPress isn't a
good framework for building web apps, or that WordPress isn’t a framework at all. With
all due respect to those with these opinions, we’d like to go over why we disagree. Here
are some common criticisms:

WordPress is just for blogs. Many people believe that since WordPress was first built to
run a blog, it is only good at running blogs.

Why Use WordPress? | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Statements like this were true a few years ago, but WordPress has since implemented
strong CMS functionality, making it useful for other content-focused sites. WordPress
is now the most popular CMS in use, with over 50% market share.’

>«

Figure 1-1 shows a slide from Matt Mullenweg’s “State of WordPress” presentation from
WordCamp San Francisco 2013. The upside-down pyramid on the left represents a circa
2006 WordPress, with most of the code devoted to the blog application and a little bit
of CMS and platform code holding it up. The pyramid on the right represents the current
state of the WordPress platform, where most of the code is in the platform itself, with a
CMS layer on top of that, and the blog application running on top of the CMS layer.
WordPress is a much more stable platform than it was just a few years ago.

Blog

CMS
Platform

Figure 1-1. Diagrams from Matt Mullenweg’s “State of WordPress” presentation in
2013. WordPress wasn’t always so stable.

The Custom Post Types API can be used to tweak your WordPress install to support
other content types besides blog posts or pages. This is covered in detail in Chapter 5.

WordPress is just for content sites. Similar to the “just for blogs” folks, some will say that
WordPress is just for content sites.

WordPress is the clear choice for any content-related website. However, as we’ll go over
in detail in this very book, WordPress is a great framework for building more interactive
web applications as well.

The main feature allowing WordPress to be used as a framework is the plugins API,
which allows you to hook into how WordPress works by default and change things. Not
only can you use the thousands of plugins available in the WordPress repository and
elsewhere on the Internet, you can use the plugins API to write your own custom plugins
to make WordPress do anything possible in PHP/MySQL.

WordPress doesn’t scale. Some will point to a default WordPress install running on low-
end hosting, note how the site slows down or crashes under heavy load, and conclude
that WordPress doesn’t scale.

2. W3Tech has regular surveys on the use of different content management systems.

8 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://bit.ly/w3techs
http://www.it-ebooks.info/

This statement is provably false. WordPress.com runs on the same basic software as any
WordPress site and at the time of this writing is somewhere between the 13th most- and
22nd-most-visited website in the world.?

The issues with scaling WordPress are the same issues you have scaling any application:
caching pages and data and handling database calls more rapidly. We can learn by how
large sites like WordPress.com, TechCrunch, and the New York Times blogs have scaled
on WordPress. Similarly, most of the lessons learned scaling PHP/MySQL applications
in general apply to WordPress as well. Scaling WordPress apps is covered in detail in
Chapter 16.

WordPress is insecure. Like any open source product, there will be a trade-oft with regard
to security when using WordPress.

On the one hand, because WordPress is so popular, it will be the target of hackerslooking
for security exploits. And because the code is open source, these exploits will be easier
to discover.

On the other hand, because WordPress is open source, you will hear about it when these
exploits become public, and someone else will probably fix the exploit for you.

We feel more secure knowing that there are lots of people out there trying to exploit
WordPress and just as many people working to make WordPress secure against those
exploits. We don’t believe in “security through obscurity” except as an additional meas-
ure. We'd rather have the security holes in our software come out in the open rather
than go undetected until the worst possible moment.

Chapter 8 will cover security issues in more detail, including a list of best practices to
harden your WordPress install and how to code in a secure manner.

WordPress plugins are crap. The plugin API in WordPress and the thousands of plugins
that have been developed using it are the secret sauce and in our opinion the number
one reason that WordPress has become so popular and is so successful as a website
platform.

Some people will say, “Sure, there are thousands of plugins, but they are all crap””

OK, some of the plugins out there are crap. But there are a lot of plugins that are most
definitely not crap.

Paid Memberships Pro, developed by our coauthor Jason Coleman, is not crap. Using
Paid Memberships Pro to handle your member billing and management will allow you
to focus your development efforts on your apps core competency instead of how to
integrate your site with a payment gateway.

3. Quantcast top sites and Alexa top sites

Why Use WordPress? | 9

www.it-ebooks.info

http://www.quantcast.com/top-sites
http://www.alexa.com/topsites
http://www.it-ebooks.info/

Alot of plugins do something very simple (e.g., hiding the admin bar from nonadmins),
work exactly as advertised, and don’t really have room for being crap.

Even the crappy plugins can be fixed, rewritten, or borrowed from to work better. You
may find it easier sometimes to rewrite a bad plugin instead of fixing it. However, you're
still further ahead than you would be if you had to write everything yourself from
scratch.

No one is forcing you to use WordPress plugins without vetting them yourself. If you
are building a serious web app, you're going to check out the plugin code yourself, fix
it up to meet your standards, and move on with development.

When Not to Use WordPress

WordPress isn't the solution for every application. Here are a few cases where you
wouldn’t want to use WordPress to build your application.

You Plan to License or Sell Your Site’s Technology

WordPress uses the GNU General Public License, version 2 (GPLv2), which has re-
strictions on how you distribute any software that you build with it. Namely, you cannot
restrict what people do with your software once you sell or distribute it to them.

This is a complicated topic, but the basic idea is if you are only selling or giving away
access to your application, you won't have to worry about the GPLv2. However, if you
are selling or distributing the underlying source code of your application, the GPLv2
will apply to the code you distribute.

For example, if we host SchoolPress on our own servers and sell accounts to access the

app, that doesn’t count as distribution, and the GPLv2 doesn’t impact our business at
all.

However, if we wanted to allow schools to install the software to run on their own servers,
we would have to share the source code with them. This would count as an act of dis-
tribution. Our customers would be able to legally give our source code away for free
even if we had initially charged them for the software. We'd have to use the GPLv2
license, which wouldn't allow us to restrict what they do with the code after they down-
loaded it.

There Is Another Platform That Will Get You “There” Faster

If you have a team of experienced Ruby developers, you should use Ruby to build your
web app. If there is a platform, framework, or bundle that includes 80% of the features
you need for your web app and WordPress doesn't have anything similar, you should
probably use that other platform.

10 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

Flexibility Is NOT Important to You

One of the greatest features of a WordPress site is the ability to change parts of your
website to better fit your needs quickly. For example, if Facebook “likes” stop driving
traffic, you can uninstall your Facebook connect plugin and install a Google+ one.

Generally, updating your theme or swapping plugins on a WordPress site will be faster
than developing features from scratch on another platform.

However, in cases where optimization and performance are more important than being
able to quickly update the application, programming a native app or programming in
straight PHP, is going to be the better choice.

For example, if your app is going to do one simple thing (say just display the current
time), you will want to build your app at a lower level. Similarly, if you have Facebook’s
resources, you can afford to build everything by hand and use custom PHP-to-C com-
pilers to shave a few milliseconds off your website load times.

Your App Needs to Be Highly Real Time

One of the potential downsides of WordPress, which we will get into later, is its reliance
on the typical web server architecture. In the typical WordPress setup, a user visits a
URL, which hits a web server (like Apache) over HT TP, kicks off a PHP script to generate
the page, and then returns the full page to the user.

There are ways to improve the performance of this architecture using caching techni-
ques and/or optimized server setups. You can make WordPress asynchronous by using
using AJAX calls or accessing the database with alternative clients. However, if your
application needs to be real-time and fully asynchronous (e.g., a chatroom-like app or
a multiplayer game), you have our blessing to think twice about using WordPress.

Many WordPress developers, including Matt Mullenweg, the founder and spiritual
leader of WordPress, understand this limitation. It is very likely that the WordPress core
will be updated over time to work better for real-time asynchronous apps (the Heartbeat
API released in version 3.6 of WordPress is a good step in this direction), but currently
you’re going to face an uphill battle trying to get WordPress to work asynchronously
with the same performance as a native app or something built using Node.js or other
technologies specifically suited to real-time applications.

WordPress as an Application Framework

Content management systems like WordPress, Drupal, and Joomla often get left out of
the framework discussion, but in reality, WordPress (in particular) is really great for
what frameworks are supposed to be about: quickly building applications.

WordPress as an Application Framework | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Within minutes, you can set up WordPress and have a fully functional app with user
signups, session management, content management, and a dashboard to monitor site
activity.

The various APIs, common objects, and helper functions covered throughout this book
allow you to code complex applications faster without having to worry about lower-
level systems integration.

Figure 1-2 shows that right triangle from Mullengweg’s 2013 “State of WordPress” pre-
sentation depicting a stable WordPress platform with a CMS layer built on top and a
blogging application built on top of the CMS layer.

The reality is that the majority of the current WordPress codebase supports the under-
lying application platform. You can think of each WordPress release as a application
framework with a sample blogging app bundled in.

Blog

CMS
Platform

Figure 1-2. The WordPress platform.

WordPress Versus MVC Frameworks

MVC stands for model-view-controller and is a common design pattern used in many
software development frameworks. The main benefits of using an MVC architecture
are code reusability and separation of concerns. WordPress doesn’t use an MVC archi-
tecture, but does in its own way encourage code reuse and separation of concerns.

I'll explain the MVC architecture very briefly and how it maps to a WordPress devel-
opment process. This section should help readers who are familiar with MVC-based
frameworks understand how to approach WordPress development in a similar way.

Figure 1-3 describes a typical MVC-based application. The end user uses a controller,
which manipulates the application state and data via a model, which then updates a view
that is shown to the user. For example, in a blog application, a user might be looking at
the recent posts page (a view). The user would click a post title, which would take the
user to a new URL (a controller) that would load the post data (in a model) and display
the single post (a different view).

12 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

MODEL
Updatesl_ Manipulates

VIEW CONTROLLER

Sees E Uses

Figure 1-3. How MVC works

The MVC architecture supports code reusability by allowing the models, views, and
controllers to interact. For example, both the recent posts view and the single posts view
might use the same post model when displaying post data. The same models might be
used in the frontend to display posts and in the backend to edit them.

The MVC architecture supports separation of concerns by allowing designers to focus
their attention on the views, while programmers focus their attention on the models.

You could try to use an MVC architecture within WordPress. There are a number of
projects to help you do just that; however, we think trying to strap MVC onto WordPress
could lead to issues unless the WordPress core were to officially support MVC. Instead,
we suggest following the “WordPress Way,” as outlined in this book.

Still, if you are interested. ..

MVC plugins for WordPress

« WP MVC
o Churro
e Tina MVC

There are a couple of ways to map an MVC process to WordPress.

Models = plugins

In an MVC framework, the code that stores the underlying data structures and business
logic are found in the models. This is where the programmers will spend the majority
of their time.

In WordPress, plugins are the proper place to store new data structures, complex busi-
ness logic, and custom post type definitions.

This comparison breaks down in a couple of ways. First, many plugins add view-like
functionality and contain design elements. Take any plugin that adds a widget to be used

WordPress as an Application Framework | 13

www.it-ebooks.info

http://bit.ly/wp-mvc
http://bit.ly/churro-plugin
http://bit.ly/tina-mvc
http://www.it-ebooks.info/

in your pages. Second, forms and other design components used in the WordPress
dashboard are generally handled in plugins as well.

One way to make the separation of concerns more clear when adding view-like com-
ponents to your WordPress plugins is to create a “templates” or “pages” folder and put
your frontend code into it. Common practice is to allow templates to override the tem-
plate used by the plugin. For example, when using WordPress with the Paid Member-
ships Pro plugin, you can place a folder called “paid-memberships-pro/pages” into your
active theme to override the default page templates.*

Views = themes

In an MVC framework, the code to display data to the user is written in the views. This
is where designers will spend the majority of their time.

In WordPress, themes are the proper place to store templating code and logic.

Again, the comparison here doesn't map one to one, but “views = themes” is a good
starting point.

Controllers = template loader

In an MVC framework, the code to process user input (in the form of URLs or $_GET
or $_POST data) and decide which models and views to use to handle a request are stored
in the controllers. Controller code is generally handled by a programmer and often set
up once and forgotten about. The meat of the programming in an MVC application
happens in the models and views.

In WordPress, all page requests (unless they are accessing a cached .html file) are pro-
cessed through the index.php file and processed by WordPress according to the Tem-
plate Hierarchy. The template loader figures out which file in the template should be
used to display the page to the end user. For example, use search.php to show search
results, single.php to show a single post, etc.

The default behavior can be further customized via the WP_Rewrite API (covered in
Chapter 7) and other hooks and filters.

Codex information on the Template Hierarchy is available online; the Template Hier-
archy is covered in more depth in Chapter 4.

For a better understanding of how MVC frameworks work, the PHP framework Yii has
a great resource explaining how to best use their MVC architecture.

For a better understanding of how to develop web applications using WordPress as a
framework, continue reading this book.

4. This technique for overriding plugin templates is covered in Chapter 4.

14 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://bit.ly/temp-hier
http://bit.ly/yii-guide
http://www.it-ebooks.info/

Anatomy of a WordPress App

In this section, we’ll describe the app we built as a companion for this book: School-
Press. We'll cover the intended functionality of SchoolPress, how it will work and who
will use it, and—most importantly for this book—how each piece of the app will be built
in WordPress.

Don't be alarmed if you don’'t understand some of the following terminology. In later
chapters, we will go over everything introduced here in more detail. Whenever possible,
we’ll point to the chapter of this book that corresponds to the feature being discussed.

What Is SchoolPress?

SchoolPress is a web app that makes it easy for teachers to interact with their students
outside of the classroom. Teachers can create classes and invite their students to them.
Each class has a forum for ad hoc discussion and also a more structured system for
teachers to post assignments and have students turn in their work.

The working app can be found on the SchoolPress website. The SchoolPress source code
can be found on GitHub.

SchoolPress Runs on a WordPress Multisite Network

SchoolPress runs a multisite version of WordPress. The main site at schoolpress.me
hosts free accounts where teachers can sign up and start managing their classes. It also
has all of the marketing information for separate school sites on the network, including
the page to sign up and checkout for a paid membership level.

Schools can pay an annual fee to create a unique subdomain for their school, like
yourschool.schoolpress.me, that will house classes for their teachers and offers finer con-
trol and reporting for all classes across the entire school. Details on using a multisite
network with WordPress can be found in Chapter 13.

The SchoolPress Business Model

SchoolPress uses the Paid Memberships Pro, PMPro Register Helper, and PMPro Net-
work plugins to customize the registration process and accept credit card payments for
schools signing up.

Schools can purchase a unique subdomain for their school for an annual fee. No other
SchoolPress users pay for access.

When school admins sign up, they can specify a school name and slug for their subdo-
main (myschool.schoolpress.me). A new network site is set up for them and they are
given access to a streamlined version of the WordPress dashboard for their site.

Anatomy of a WordPressApp | 15

www.it-ebooks.info

http://schoolpress.me
https://github.com/bwawwp/schoolpress
http://www.it-ebooks.info/

The school admin then invites teachers into the system. Teachers can also request an
invitation to a school that must be approved by the school admin.

Teachers can invite students to the classes they create. Students can also request an
invitation to a class that must be approved by the teacher.

Teachers can also sign up for free to host their classes at schoolpress.me. Pages hosted
on this subdomain may run ads or other monetization schemes. Details on how to setup
ecommerce with WordPress can be found in Chapter 15.

Membership Levels and User Roles

Teachers are given a Teacher membership level (through Paid Memberships Pro) and
a custom role called “Teacher” that gives them access to create and edit their classes,
moderate discussion in their class forums, and create and manage assignments for their
classes.

Teachers do not have access to the WordPress dashboard. They create and manage their
classes and assignments through frontend forms created for this purpose.

Students are given a “Student” membership level and the default “Subscriber” role in
WordPress. Students only have access to view and participate in classes they are invited
to by their teachers. Details on user roles and capabilities can be found in Chapter 6.
Details on using membership levels to control access can be found in Chapter 15.

Classes Are BuddyPress Groups

When teachers create “classes,” they are really creating BuddyPress groups and inviting
their students to the group. Using BuddyPress, we get class forums, private messaging,
and a nice way to organize our users.

The class discussion forums are powered by the bbPress plugin. A new forum is gen-
erated for each class, and BuddyPress manages access to the forums. Details on lever-
aging third-party plugins like BuddyPress and bbPress can be found in Chapter 3.

Assignments Are a Custom Post Type

Assignments are a custom post type (CPT), with a frontend submission form for teach-
ers to post new assignments. Assignments are just like the default blog posts in Word-
Press, with a title, body content, and attached files. The teacher posting the assignment
is the author of the post.

16 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress has built-in post types like posts and pages and built-in
taxonomies like categories and tags. For SchoolPress, we are creat-
ing our own CPTs and taxonomies. Details on creating custom post
types and taxonomies can be found in Chapter 5.

Submissions Are a (Sub)CPT for Assignments

Students can post comments on an assignment, and they can also choose to post their
official submission for the assignment through another form on the frontend.

Submissions, like assignments, are also CPTs. Submissions are linked to assignments
by setting the submission’s post_parent field to the ID of the assignment it was sub-
mitted to. Students can post text content and also add one or more attachments to a
submission.

Semesters Are a Taxonomy on the Class CPT

A custom taxonomy called “Semester” is set up for the group/class CPT. School admins
can add new semesters to their sites. For example, a “fall 2013” semester could be created
and teachers could assign this semester when creating their classes. Students can then
easily view a list of all fall 2013 classes to browse through.

Departments Are a Taxonomy on the Class CPT

A custom taxonomy called “Department” is also set up for the group/class CPT. This is
also available as a dropdown for teachers when creating their classes and allows for a
browsable list of classes by department.

SchoolPress Has One Main Custom Plugin

Behind the scenes, the custom bits of the SchoolPress app are controlled from a single
custom plugin called SchoolPress. This — the main plugin — includes the definitions
for the various custom post types, taxonomies, and user roles. It also contains the code
to tweak the third-party plugins SchoolPress uses like Paid Memberships Pro and Bud-
dyPress.

The main plugin also contains classes for school admins, teachers, and students that
extend the WP_User class and classes for classes, assignments, and submissions that
wrap the WP_Post class. These (PHP) classes allow us to organize our code in an object-
oriented way that makes it easier to control how our various customizations work to-
gether and will make it easier to extend our code in the future. These classes are fun to
work with and allow for the code that you see in Example 1-1.

Anatomy of a WordPressApp | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1-1. Possible user log-in events

if($class->isTeacher($current_user))

{
//this is the teacher, show them teacher stuff
Y/
}
elseif(Sclass->isStudent(Scurrent_user))
{
//this is a student in the class, show them student stuff
Y/
}
elseif(is_user_logged_in())
{
//not logged in, send them to the login form with a redirect back here
wp_redirect(wp_login_url(get_permalink($class->ID)));
exit;
}
else
{
//not a member of this class, redirect them to the invite page
wp_redirect($class->invite_url);
exit;
}

Creating custom plugins is covered in Chapter 3. Extending the WP_User class is cov-
ered in Chapter 6.

SchoolPress Uses a Few Other Custom Plugins

Occasionally a bit of code will be developed for a particular app that would also be useful
on other projects. If the code can be contained enough that it can run outside of the
context of the current app and main plugin, it can be built into a separate custom plugin.

An example of this would be the force-first-name-last-name plugin that was a require-
ment for this project. It didn’t require any of the main plugin code to run and is useful
for other WordPress sites outside of the context of the SchoolPress app.

SchoolPress Uses the StartBox Theme Framework

The main schoolpress.me site runs on a customized StartBox child theme. If a school
signs up for a premium subdomain, it can choose from a variety of StartBox child
themes; it also has the ability to change any of the theme’s colors, fonts, and logos to
better fit its branding.

All themes use a responsive design that ensures the site will look good on mobile and
tablet displays as well as desktop displays.

The code in the StartBox theme is very strictly limited to display-related programming.
The theme code obviously includes the HTML and CSS for the site’s layout, but also

18 | Chapter 1: Building Web Apps with WordPress

www.it-ebooks.info

http://wpstartbox.com
http://www.it-ebooks.info/

contains some simple logic that integrates with the main SchoolPress plugin (like the
preceding branching code). However, any piece of code that manipulates the custom
post types or user roles or involves a lot of calculation is delegated to the SchoolPress
plugin.

Anatomy of a WordPressApp | 19

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
WordPress Basics

WordPress was first developed in 2003 and was created primarily as blogging soft-
ware. By the release of version 3.5, the image of Wordpress had changed from blogging
software to a versatile CMS (content management system) and the word “blog” was
actually removed from the description of the software and in most places in the source
code. Today, it has evolved to become the largest platform on the web and is used on
about 20% of all the websites on the Internet.

There are a couple of reasons WordPress has gained so much popularity over the years.
The first is that WordPress is open source software and has an entire community of
people who are invested in improving it and continually contributing new code to ex-
tend its functionality. WordPress users, developers, and designers are always thinking
of new creative ways to use WordPress and creating plugins for these new features, which
are then made available to the community.

Another reason WordPress has been so successful is the fact that it is an extremely
flexible CMS and can be used to power all different types of websites. Developers are
constantly exploring innovative new ways to use the software, including using it to build
web applications, which is the focus of this book.

We are going to assume that you already know how to use Word-
Press, and have already installed the latest version somewhere. If this
is your first time using WordPress, you should check out the book
WordPress for Dummies. Not saying youre a dummy or anything, but
everyone has to start somewhere.

WordPress Directory Structure

Let’s take a quick top-level look at the folders and files that are included within a typical
WordPress install.

21

www.it-ebooks.info

http://www.it-ebooks.info/

Root Directory

In the root directory, there are a few core WordPress files. Unless you are digging around
in the core WordPress code looking for hooks to use or certain functionality, the only
file you may need to ever alter is wp-config.php. You should never, ever, ever, ever' alter
any other core WordPress files. Hacking core is a bad idea because you won’t be able to
upgrade WordPress when a new version becomes available without overriding your
changes. The only directory you should need to interact with is wp-content because it
contains your plugins, themes, and uploaded files.

Any time you find yourself wanting to hack a core WordPress file, think again. There
is probably a hook you could use to accomplish the same goal. If there isn’t a hook
available to do what you need, add one and try to get it added to core. The core Word-
Press developers are very responsive about adding in new hooks and filters.

/wp-admin

This directory contains core directories and files for managing the WordPress admin
interface. Another key file in this directory is admin-ajax.php, which all AJAX requests
should be run through. AJAX is covered in Chapter 9.

/wp-includes

This directory contains core directories and files for various WordPress functionality.

/wp-content

This directory contains subdirectories for the plugins and themes you have installed on
your site and any media files you upload to your site. If you create a plugin that needs
to store dynamic files of its own, it is a best practice to place them somewhere in the
wp-content folder so they are included in a content backup.

The following directories are subdirectories of the wp-content directory.

/wp-content/plugins

Any WordPress plugin you install on your WordPress site will be located in this direc-
tory. By default, WordPress comes with the Hello Dolly and Akismet plugins.

1. ... ever, ever, ever ...

22 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

/wp-content/themes

Any WordPress themes you install on your WordPress site will be located in this direc-
tory. By default, WordPress comes with the Twenty Eleven, Twenty Twelve, Twenty
Thirteen, and Twenty Fourteen themes.

/wp-content/uploads

Once you start uploading any photos or files to your media library, you will start seeing
this directory being populated with those uploaded files. All uploaded media is stored
in the uploads directory.

/wp-content/mu-plugins

In WordPress, you can force the use of any plugin by creating a mu-plugins directory
inside of the wp-content directory. This directory does not exist unless you create it. The
“mu” stands for “must use,” and any plugin you put in the mu-plugins folder will auto-
matically run without needing to be manually activated on the admin plugins page. In
fact, you won't even see any must use plugins listed there.

Must use plugins are especially useful on multisite installs of WordPress so you can use
plugins that your individual network site admins won’t be able to deactivate.

WordPress Database Structure

WordPress runs on top of a MySQL database and creates its own tables to store data
and content. Below is the database schema created by a default install of WordPress. We
have also included some basic information on built-in WordPress functions for inter-
acting with these tables. If you can grasp the database (DB) schema and get comfortable
with the list functions in this chapter, you can push and pull any data into and out of
WordPress.

The following table names use the default prefix of wp_. This prefix
can be changed during the WordPress installation, and so the exact
table names of your WordPress install may vary.

wp_options

The wp_options table stores any sitewide data for you. This table stores the name, de-
scription, and admin email that you entered when running a typical install. This table
will also come prepopulated with a few records that store the various default settings
within WordPress. Table 2-1 shows the database structure for the wp_options table.

WordPress Database Structure | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-1. DB schema for wp_options table

Column Type Collation Null Default Extra

option_id bigint(20) No None AUTO_INCREMENT
option_name varchar(64) utf8_general_ci No

option_value longtext utf8_general_ci No None

autoload varchar(20) utf8_general_ci No Yes

Functions Found in /wp-includes/option.php

The following functions can all be found in /wp-includes/option.php:

add_option(Soption, $value =, Sdeprecated =", Sautoload = yes)

First checks if an option_name exists before inserting a new row:

o $option—A required string of the option_name you would like to add.

o $value—An optional mixed variable of the option_value you would like to add. If
the variable passed is an array or object, the value will be serialized before storing
in the database.

o $deprecated—This parameter was deprecated in version 2.3 and is not used any-
2
more.

 $autoload—An optional Boolean used to distinguish whether to load the option
into cache when WordPress starts up. Set to yes or no. The default value is no. This
can save you a DB query if you are sure you are going to need this option on every
page load.

update_option($option, Snewvalue)

Updates an existing option but will also add it if it doesn’t already exist:

o $option—A required string of the option_name you would like to update/add.

o $newvalue—An optional mixed variable of the option_value you would like to

update/add.

get_option($option, $default = false)

Retrieves the option_value for a provided option_name:

2. The third parameter for add_option, which was deprecated in 2.3, used to be a “description” string that was
stored along with the option in the wp_options table.

24 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

 $option—A required string of the option_name you would like to get.

o $default—An optional mixed variable you would like to return if the op
tion_name you provided doesn’t exist in the table. By default, this parameter is false.

delete_option($option)

Deletes an existing option from the database permanently:

 $option—A required string of the option_name you would like to delete.

Most of the code examples in this book are not fully functional code.
They are basic theoretical examples of how to use the functions we
are talking about. You can follow along with most of the code exam-
ples if you like in a custom plugin or your theme’s functions.php file.

Example 2-1 demonstrates some of the basic functions for interacting with the wp_op
tions table.

Example 2-1. Adding, updating, getting, and deleting records in the wp_options table

<?php

// add option

Stwitters = array('@bwawwp', '@bmess', '@jason_coleman');
add_option('bwawwp_twitter_accounts', Stwitters);

// get option

Sbwawwp_twitter_accounts = get_option('bwawwp_twitter_accounts');
echo '<pre>';

print_r(Sbwawwp_twitter_accounts);

echo '</pre>';

// update option
Stwitters = array_merge(
Stwitters,
array/(
' @webdevstudios',
'@strangerstudios’
)
)

update_option('bwawwp_twitter_accounts', Stwitters);

// get option

Sbwawwp_twitter_accounts = get_option('bwawwp_twitter_accounts');
echo '<pre>';

print_r(Sbwawwp_twitter_accounts);

echo '</pre>';

WordPress Database Structure | 25

www.it-ebooks.info

http://www.it-ebooks.info/

// delete option

delete_option('bwawwp_twitter_accounts');

/*

The output from the above example should look something like this:

Array
(
[0] => @bwawwp
[1] => @bmess
[2] => @jason_coleman

)
Array
(
[0] => @bwawwp
[1] => @bmess
[2] => @jason_coleman
[3] => @webdevstudios
[4] => @strangerstudios
)
*/
7>
wp_users

When you log in to WordPress with your username and password, you are referencing
data stored in this table. All users and their default data are stored in the wp_users table.
Table 2-2 shows the database structure for the wp_users table.

Table 2-2. DB schema for wp_users table

Column Type

ID bigint(20)
user_login varchar(60)
user_pass varchar(64)
user_nicename varchar(50)
user_email varchar(100)
user_url varchar(100)
user_registered datetime

user_activation_key varchar(60)
user_status int(11)

display_name varchar(250)

Collation

utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d

utf8_general_d

utf8_general_d

utf8_general_d

Null

No
No
No
No
No
No
No
No
No
No

Default Extra
None AUTO_INCREMENT

0000-00-00 00:00:00

26 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Functions Found in /wp-includes/...

The following functions are found in /wp-includes/pluggable.php and /wp-includes/
user.php:

wp_insert_user(Suserdata)

Inserts a new user into the database. This function can also be used to update a user if
the user ID is passed in with the $user_data. $userdata is a required array of field names
and values. The accepted fields are:

o ID—An integer that will be used for updating an existing user.
o user_pass—A string that contains the plain-text password for the user.
o user_login—A string that contains the user’s username for logging in.

o user_nicename—A string that contains a URL-friendly name for the user. The de-
fault is the user’s username.

o user_url—A string containing the URL for the user’s website.
o user_email—A string containing the user’s email address.

o display_name—A string that will be shown on the site. Defaults to the user’s user-
name. It is likely that you will want to change this, for appearance.

o nickname—The user’s nickname. Defaults to the user’s username.

o first_name—The user’s first name.

o last_name—The user’s last name.

o description—A string containing content about the user.

o rich_editing—A string for whether to enable the rich editor. False if not empty.
o user_registered—The date the user registered. Format is Y-m-d H:i:s.

o role—A string used to set the user’s role.

o jabber—User’s Jabber account.

« aim—User’s AOL IM account.

o yim—User’s Yahoo IM account.

wp_create_user(Susername, $password, $email)
This function utilizes the prior function wp_insert_user() and makes it easier to add
a new user based on the required columns:

o $username—A required string of the username/login of a new user.

o $password—A required string of the password of a new user.

WordPress Database Structure | 27

www.it-ebooks.info

http://www.it-ebooks.info/

o $email—A required string of the email address of a new user.

wp_update_user($userdata)

This function can be used to update any of the fields in the wp_users and wp_userme
ta (covered next) tables tied to a specific user. Note that if a user’s password is updated,
all of his cookies will the cleared, logging him out of WordPress:

 $userdata—A required array of field names and values. The ID and at least one
other field is required. These fields are the same ones accepted in the wp_in
sert_post() function.

get_user_by($field, Svalue)

This function returns the WP_User object on success and false if it fails. The WordPress
User class is found in /wp-includes/capabilities.php and basically queries the wp_user
table like so:

SELECT * FROM wp_users WHERE $field = $value;

The WP_User class also caches the results so it is not querying the database every time
it is used. The class also figures out the roles and capabilities of a specific user, which
we will go over in more detail in Chapter 6:

o $field—A required string of the field you would like to query the user data by. This
string can only be id, slug, email, or login.

o $value—A required integer or string of the value for a given id, slug, email or login.

get_userdata(Suserid)
This function actually utilizes the previous function get_user_by() and returns the
same WP_User object:

« $userid—A required integer of the user ID of the user you would like to get data
for.

wp_delete_user($id, $reassign = novalue)

You guessed it: this function deletes a user and can also reassign any of their posts or
links to another user:

o $id—A required integer of the ID of the user you would like to delete.

28 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

o $reassign—An optional integer of the ID you would like to reassign any post or
links from the deleted user to. Example 2-2 demonstrates some of the basic func-
tions for interacting with the wp_users table.

Example 2-2. Working with the wp_users table

<?php
// insert user
Suserdata = array(

'user_login' => 'brian',
'user_pass' => 'K003gT7@n*",
'user_nicename' => 'Brian’,
'user_url' => 'http://webdevstudios.com/',
'user_email' => 'brian@schoolpress.me',
'display_name' => 'Brian',
'nickname’ => 'Brian',
'first_name' => 'Brian',
'last_name' => 'Messenlehner',
'description’ => 'This is a SchoolPress Administrator account.',
'role’ => 'administrator'

);

wp_insert_user($userdata);

// create users
wp_create_user('jason', 'YR529G%*v@', 'jason@schoolpress.me');

// get user by login

Suser = get_user_by('login', 'brian');

echo 'email: ' . Suser->user_email . ' / ID: ' . Suser->ID . '
';
echo 'Hi: ' . Suser->first_name . ' ' . Suser->last_name . '
';

// get user by email
Suser = get_user_by('email', 'jason@schoolpress.me');
echo 'username: ' . Suser->user_login . ' / ID: ' . Suser->ID . '
';

// update user - add first and last name to brian and change role to admin
Suserdata = array(

'ID’ => $Suser->ID,

'first_name' => 'Jason’,

'last_name' => 'Coleman',

'user_url' => 'http://strangerstudios.com/',
'role’ => 'administrator'

);

wp_update_user($userdata);

// get userdata for brian
Suser = get_userdata(Suser->ID);
echo 'Hi: ' . Suser->first_name .

. Suser->last_name . '
';

// delete user - delete the original admin and set their posts to our new admin
// wp_delete_user(1, Suser->ID);

WordPress Database Structure | 29

www.it-ebooks.info

http://www.it-ebooks.info/

/*

The output from the above example should look something like this:
email: brian@schoolpress.me / ID: 2

Hi: Brian Messenlehner

username: jason / ID: 3

Hi: Jason Coleman

*/

?>

wp_usermeta

Sometimes you may want to store additional data along with a user. WordPress provides
an easy way to do this without having to add additional columns to the users table. You
can store as much user metadata as you need to in the wp_usermeta table. Each record
is associated to a user ID in the wp_user table by the user_1id field. Table 2-3 shows the
database structure for the wp_usermeta table.

Table 2-3. DB schema for wp_usermeta table

Column Type Collation Null Default Extra
umeta_id bigint(20) No None AUTO_INCREMENT
user_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

get_user_meta(Suser_id, Skey =", $single =false)

Gets a user’s meta value for a specified key:

o $user_id—A required integer of a user ID.

+ $key—An optional string of the meta key of the value you would like to return. If
blank then all metadata for the given user will be returned.

o $single—A Boolean of whether to return a single value or not. The default is false
and the value will be returned as an array.

There can be more than one meta key for the same user ID with different values. If you
set $single to true, you will get the first key’s value; if you set it to false, you will get
an array of the values of each record with the same key.

30 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

update_user_meta(Suser_id, Smeta_key, $meta_value, $prev_value=")

This function will update user metadata but will also insert metadata if the passed-in
key doesn't already exist:

o $user_id—A required integer of a user ID.

o $meta_key—A required string of the meta key name for the meta value you would
like to store. If this meta key already exists, it will update the current row’s meta
value, if not it will insert a new row.

o $meta_value—A required mixed value of an integer, string, array, or object. Arrays
and objects will automatically be serialized.

o $prev_value—An optional mixed value of the current metadata value. If a match is
found, it will replace the previous/current value with the new value you specified.
If left blank, the new meta value will replace the first instance of the matching key.
If you have five rows of metadata with the same key and you don’t specify which
row to update with this value, it will update the first row and remove the other four.

This function relies on the update_metadata() function located
in /wp-includes/meta.php. Check it out!

add_user_meta($user_id, Smeta_key, Smeta_value, Sunique = false)

Yup, this function will insert brand-new user meta into the wp_usermeta table. We don’t
use this function often anymore because we can just use update_user_meta() to insert
new rows as well as update them. If you want to ensure that a given meta key is only
ever used once per user, you should use this function and set the $unique parameter to
true:

o $user_id—A required integer of a user ID.

o $meta_key—A required string of the meta key name for the meta value you would
like to store.

o $meta_value—A required mixed value of an integer, string, array, or object.

o $unique—An optional Boolean, which when set to true will make sure the meta
key can only ever be added once for a given ID.

WordPress Database Structure | 31

www.it-ebooks.info

http://www.it-ebooks.info/

delete_user_meta($user_id, $meta_key, Smeta_value =")

Deletes user metadata for a provided user ID and matching key. You can also specify a
matching meta value if you only want to delete that value and not other metadata rows
with the same meta key:

o $user_id—A required integer of a user ID.

» $meta_key—A required string of the meta key name for the meta value you would
like to delete.

o $meta_value—An optional mixed value of the meta value. If you have more than
one record with the same meta key, you can specify which one to delete by matching
the meta value. It defaults to nothing, which will delete all meta rows with a match-
ing user_1id and meta_key.

Example 2-3 demonstrates some of the basic functions for interacting with the wp_user
name table.

Example 2-3. Working with the wp_username table

<?php
// get brian's id
S$brian_id = get_user_by('login', 'brian')->ID;

// add user meta - unique is set to true. no polygamy! only
one wife at a time.
add_user_meta($brian_id, 'bwawwp_wife', 'Robin Jade Morales Messenlehner', true);

// get user meta - returning a single value
Sbrians_wife = get_user_meta($brian_id, 'bwawwp_wife', true);
echo "Brian's wife: " . $brians_wife . "
";

// add user meta - no 3rd parameter/unique. can have as many kids
as wife will let me.

add_user_meta($brian_id, 'bwawwp_kid', 'Dalya');

add_user_meta($brian_id, 'bwawwp_kid', 'Brian');

add_user_meta($brian_id, 'bwawwp_kid', 'Nina');

// update user meta - this will update brian to brian jr.
update_user_meta($brian_id, 'bwawwp_kid', 'Brian Jr', 'Brian');

// get user meta - returning an array

S$brians_kids = get_user_meta($brian_id, 'bwawwp_kid');
echo "Brian's kids:";

echo '<pre>';

print_r(Sbrians_kids);

echo '</pre>';

// delete brian's user meta
delete_user_meta($brian_id, 'bwawwp_wife');
delete_user_meta($brian_1id, 'bwawwp_kid');

32 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

// get jason's id
$jason_id = get_user_by('login', 'jason')->ID;

// update user meta - this will create meta if the key doesn't exist for the user.
update_user_meta($jason_id, 'bwawwp_wife', 'Kimberly Ann Coleman');

// get user meta - returning an array

$jasons_wife = get_user_meta($jason_1id, 'bwawwp_wife');
echo "Jason's wife:";

echo '<pre>';

print_r($jasons_wife);

echo '</pre>';

// add user meta - storing as an array
add_user_meta($jason_id, 'bwawwp_kid', array('Isaac', 'Marin'));

// get user meta - returning a single value which happens to be an array.
$jasons_kids = get_user_meta($jason_id, 'bwawwp_kid', true);

echo "Jason's kids:";

echo '<pre>';

print_r($jasons_kids);

echo '</pre>';

// delete jason's user meta
delete_user_meta($jason_id, 'bwawwp_wife');
delete_user_meta($jason_1id, 'bwawwp_kid');

/%

The output from the above example should look something like this:
Brian's wife: Robin Jade Morales Messenlehner

Brian's kids:

Array

(
[0] => Dalya
[1] => Brian Jr
[2] => Nina

)

Jason's wife:

Array

(
[0] => Kimberly Ann Coleman

)

Jason's kids:

Array

(
[0] => Isaac
[1] => Marin

)

*/

7>

WordPress Database Structure | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Wp_posts

Ah, the meat of WordPress. The wp_posts table is where most of your post data is
stored. By default, WordPress comes with posts and pages. Both of these are technically
posts and are stored in this table. The post_type field is what distinguishes what type
of post a post is, whether it is a post, a page, a menu item, a revision, or any custom post
type that you may later create (custom post types are covered more in Chapter 5).

Table 2-4 shows the database structure for the wp_posts table.

Table 2-4. DB schema for wp_posts table

Column

ID

post_author
post_date
post_date_gmt
post_content
post_title
post_excerpt
post_status
comment_status
ping_status
post_password
post_name
to_ping

pinged
post_modified
post_modified_gmt

Type
bigint(20)
bigint(20)
datetime
datetime
longtext
text

text
varchar(20)
varchar(20)
varchar(20)
varchar(20)
varchar(200)
text

text
datetime

datetime

post_content_filtered longtext

post_parent

quid
menu_order
post_type
post_mime_type

comment_count

bigint(20)
varchar(255)
int(11)
varchar(20)
varchar(100)
bigint(20)

Collation

utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d
utf8_general_d

utf8_general_d

utf8_general_d

utf8_general _d

utf8_general_d

utf8_general_d

Null

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Default

None

0

0000-00-00 00:00:00
0000-00-00 00:00:00
None

None

None

Publish

Open

Open

None

None

0000-00-00 00:00:00
0000-00-00 00:00:00
None

0

Post

Extra
AUTO_INCREMENT

Functions found in /wp-includes/post.php

The following functions are found in /wp-includes/post.php.

34 |

Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

wp_insert_post(Spostarr, Swp_error = false)
Inserts a new post with provided post data:
 $postarr—An array or object of post data. Arrays are expected to be escaped; objects
are not.

o $wp_error—An optional Boolean that will allow for a WP_Error if returned false.
The defaults for the parameter $postarr are:

o post_status—Default is draft.
o post_type—Default is post.

o post_author—Default is current user ID ($user_ID). The ID of the user who added
the post.

o ping status—Default is the value in the default_ping status option. Whether the
attachment can accept pings.

o post_parent—Default is 0. Set this for the post it belongs to, if any.

o menu_order—Default is 0. The order it is displayed.

o to_ping—Whether to ping.

o pinged—Default is empty string.

o post_password—Default is empty string. The password to access the attachment.
« guid—Global unique ID for referencing the attachment.

o post_content_filtered—Post content filtered.

o post_excerpt—Post excerpt.

wp_update_post($postarr = array(), $wp_error = false)
Updates a post with provided post data.
o $postarr—A required array or object of post data. Arrays are expected to be escaped,
objects are not.

o $wp_error—An optional Boolean that will allow for a WP_Error if returned false.

get_post($post = null, Soutput = OBJECT, $filter = raw)
Get post data from a provided post ID or a post object:
 $post—An optional integer or object of the post ID or post object you want to

retrieve. The default is the current post you are on inside of the post loop, which is
covered later in this chapter.

WordPress Database Structure | 35

www.it-ebooks.info

http://www.it-ebooks.info/

o $output—An optional string of the output format. The default value is OBJECT
(WP_Post object) and the other values can be ARRAY_A (associative array) or AR
RAY_N (numeric array).

o $filter—An optional string of how the context should be sanitized on output. The
default value is raw, but other values can be edit, db, display, attribute, or js.
Sanitization is covered in Chapter 8.

get_posts(Sargs = null)

Returns a list of posts from matching criteria. This function uses the WP_Query class,
which you will see examples of throughout the book: $args is an optional array of post
arguments. The defaults are:

o numberposts—Default is 5. Total number of posts to retrieve. -1 is all.
o offset—Default is 0. Number of posts to pass over.

o category—What category to pull the posts from.

o orderby—Default is post_date. How to order the posts.

o order—Default is DESC. The order to retrieve the posts.

o include—A list of post IDs to include

o exclude—A list of post IDs to exclude

o meta_key—Any metadata key

o meta_value—Any metadata value. Must also use meta_key.

o post_type—Default is post. Can be page, or attachment, or the slug for any custom
CPT. The string any will return posts from all post types.

o post_parent—The parent ID of the post.

o post_status—Default is publish. Post status to retrieve.

wp_delete_post(Spostid =0, $force_delete = false)

This function will trash any post or permanently delete it if $force_delete is set to true:

o $postid—A required integer of the post ID you would like to trash or delete.

o $force_delete—An optional Boolean that if set to true will delete the post; if left
blank, it will default to false and will move the post to a deleted status.

Example 2-4 demonstrates some of the basic functions for interacting with the wp_posts
table.

36 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-4. Working with the wp_posts table

<?php

// insert post - set post status to draft

$Sargs = array(
'post_title' => 'Building Web Apps with WordPress',
'post_excerpt' => 'WordPress as an Application Framework',
'post_content' => 'WordPress is the key to successful cost effective
web solutions in most situations. Build almost anything on top of the

WordPress platform. DO IT NOW!!!!',
'post_status' => 'draft',
'post_type' => 'post',
'post_author' => 1,
'menu_order' => 0

);

$post_id = wp_insert_post($args);

echo 'post ID: ' . $post_id . '
';

// update post - change post status to publish
$Sargs = array(
'ID' => $post_1id,
'post_status' => 'publish'
);
wp_update_post($args);

// get post - return post data as an object
Spost = get_post($post_1id);
echo 'Object Title: ' . $post->post_title . '
';

// get post - return post data as an array
Spost = get_post($post_id, ARRAY_A);
echo 'Array Title: ' . $post['post_title'] . '
';

// delete post - skip the trash and permanently delete it
wp_delete_post($post_id, true);

// get posts - return 100 posts

Sposts = get_posts(array('numberposts' => '100'));

// loop all posts and display the ID & title

foreach ($posts as Spost) {
echo $post->ID . ': ' .$post->post_title . '
';

}
/*

The output from the above example should look something like this:
post ID: 589

Object Title: Building Web Apps with WordPress

Array Title: Building Web Apps with WordPress

"A list of post IDs and Titles from your install”

*

/

7>

WordPress Database Structure

www.it-ebooks.info

37

http://www.it-ebooks.info/

wp_postmeta

Sometimes you may want to store additional data along with a post. WordPress provides
an easy way to do this without having to add additional fields to the posts table. You can
store as much post metadata as you need to in the wp_postmeta table. Each record is
associated to a post through the post_1id field. When editing any post in the backend
of WordPress, you can add/update/delete metadata or Custom Fields via the UL
Table 2-5 shows the database structure for the wp_postmeta table.

Metadata keys that start with an underscore are hidden from the
Custom Fields UI on the edit post page. This is useful to hide cer-
tain meta fields that you don’t want end users editing directly.

Table 2-5. DB schema for wp_postmeta table

Column Type Collation Null Default Extra
meta_id bigint(20) No None AUTO_INCREMENT
post_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

Functions Found in /wp-includes/post.php
The following functions are found in /wp-includes/post.php.

get_post_meta(Spost_id, Skey =", $single = false)

Get post metadata for a given post:

o $post_id—A required integer of the post ID, for which you would like to retrieve
post meta.

+ $key—Optional string of the meta key name for which you would like to retrieve
post meta. The default is to return metadata for all of the meta keys for a particular
post.

 $single—A Boolean of whether to return a single value or not. The default is
false, and the value will be returned as an array.

There can be more than one meta key for the same post ID with different values. If you
set $single to true, you will get the first key’s value; if it is set to false, you will get an
array of the values of each record with the same key.

38 | Chapter2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

update_post_meta($post_id, Smeta_key, Smeta_value, $prev_value =")

This function will update post metadata but will also insert metadata if the passed-in
key doesn't already exist:

o $post_id—A required integer of a post ID.

o $meta_key—A required string of the meta key name for the meta value you would
like to store. If this meta key already exists, it will update the current row’s meta
value; if not, it will insert a new row.

o $meta_value—A required mixed value of an integer, string, array, or object. Arrays
and objects will automatically be serialized.

o $prev_value—An optional mixed value of the current metadata value. If a match is
found, it will replace the previous/current value with the new value you specified.
If left blank, the new meta value will replace the first instance of the matching key.
If you have five rows of metadata with the same key and you don’t specify which
row to update with this value, it will update the first row and remove the other four.

This function relies on the update_metadata() function located in /
wp-includes/meta.php. Check it out!

add_post_meta($post_id, Smeta_key, Smeta_value, Sunique = false)

This function will insert brand-new post meta into the wp_postmeta table. We don't use
this function so often anymore because we can just use the previous function we talked
about, update_post_meta(), to insert new rows as well as update them. If you want to
insure that a given meta key is only ever used once per post, you should use this function
and set the Sunique parameter to true:

o $user_id—A required integer of a post ID.

« $meta_key—A required string of the meta key name for the meta value you would
like to store.

o $meta_value—A required mixed value of an integer, string, array, or an object.

o $unique—An optional Boolean that when set to true will make sure the meta key
can only ever be added once for a given ID.

WordPress Database Structure | 39

www.it-ebooks.info

http://www.it-ebooks.info/

delete_post_meta(Spost_id, Smeta_key, Smeta_value =")

Deletes post metadata for a provided post ID and matching key. You can also specify a
matching meta value if you only want to delete that value and not other metadata rows
with the same meta key:

o $post_id - A required integer of a post ID.
» $meta_key - A required string of the

o $meta_value - An optional mixed value of the meta value. If you have more than
one record with the same meta key, you can specify which one to delete by matching
this value. It defaults to nothing, which will delete all meta rows with a matching
post_id and meta_key.

In Example 2-5 we will get the last post and add, update, and delete various post meta.

Example 2-5. Working with post metadata

<?php
// get posts - return the latest post
$posts = get_posts(array('numberposts' => '1', 'orderby' =>
'post_date', 'order' => 'DESC'));
foreach ($posts as Spost) {
$post_1id = $post->ID;

// update post meta - public metadata
$content = 'You SHOULD see this custom field when editing your latest post.';
update_post_meta($post_id, 'bwawwp_displayed field', $content);

// update post meta - hidden metadata
Scontent = str_replace('SHOULD', 'SHOULD NOT', S$content);
update_post_meta($post_id, ' _bwawwp_hidden_field', $content);

// array of student logins
$students[] = 'dalya';
$students[] = 'ashleigh';
$students[] = 'lola’;

$students[] = 'isaac';
$students[] = 'marin';
$students[] = 'brian';
$students[] = 'nina’';

// add post meta - one key with array as value, array will be serialized
// automatically
add_post_meta($post_1id, 'bwawwp_students', $students, true);

// loop students and add post meta record for each student
foreach (S$students as $student) {

add_post_meta($post_1id, 'bwawwp_student', Sstudent);
}

40 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

// get post meta - get all meta keys
$all_meta = get_post_meta($post_id);
echo '<pre>';

print_r($all_meta);

echo '</pre>';

// get post meta - get 1st instance of key
$student = get_post_meta($post_id, 'bwawwp_student', true);
echo 'oldest student: ' . $student;

// delete post meta
delete_post_meta($post_id, 'bwawwp_student');

}
/*

The output from the above example should look something like this:
Array

(
[_bwawwp_hidden_field] => Array
(
[0] => You SHOULD NOT see this custom field when editing your latest post.
)
[bwawwp_displayed field] => Array
(
[0] => You SHOULD see this custom field when editing your latest post.
)
[bwawwp_students] => Array
(
[0] => a:7:{i:0;s:5:"dalya";1:1;s5:8:"ashleigh";1:2;s:4:"lola";1:3;5:5:
"isaac";i:4;s:5:"marin";i:5;s:5:"brian";i:6;s:4:"nina";
)
[bwawwp_student] => Array
(
[0] => dalya
[1] => ashleigh
[2] => lola
[3] => isaac
[4] => marin
[5] => brian
[6] => nina
)
)
oldest student: dalya
*/
?>

WordPress Database Structure | 41

www.it-ebooks.info

http://www.it-ebooks.info/

wp_comments

Comments can be left against any post. The wp_comments table stores individual com-
ments for any post and default associated data. Table 2-6 shows the database structure
for the wp_comments table.

Table 2-6. DB schema for wp_comments table

Column Type Collation Null Default Extra
comment_ID bigint(20) No None AUTO_INCREMENT
comment_post_ID bigint(20) No 0

comment_author tinytext utf8_general_c No

comment_author_email varchar(100) utf8_general_ci No
comment_author_url varchar(200) utf8_general_ci No

comment_author_IP varchar(100) utf8_general_ci No

comment_date datetime No 0000-00-00 00:00:00
comment_date_gmt datetime No 0000-00-00 00:00:00

comment_content text utf8_general_ci No None

comment_karma int(11) No 0

comment_approved varchar(20) utf8_general_d No 1

comment_agent varchar(20) utf8_general_ci No

comment_type varchar(20) utf8_general_ci No

comment_parent bigint(20) No 0

user_id bigint(20) No 0

Functions Found in /wp-includes/comment.php

The following functions are found in /wp-includes/comment.php.

get_comment(Scomment, $output = OBJECT)

Returns comment data from a comment ID or comment object. If the comment is empty,
then the global comment variable will be used if set:

o $comment—An optional integer, string, or object of a comment ID or object.

 $output—An optional string that defines what format the output should be in.
Possible values are OBJECT, ARRAY_A, and ARRAY_N.

42 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

get_comments($args=")

This function retrieves a list of comments for specific posts or a single post. It calls the
WP_Comment_Query class, which we will cover in the next chapter. $args are an optional
array or string of arguments to query comments. The default arguments are:

author_email—A string of a comment author’s email address.

ID—An integer of the ID of a comment.

karma—An integer of a comment’s karma, which can be used by plugins for rating.
number— An integer of the number of comments to return. Defaultis all comments.
offset—An integer of the number of comments to pass over. Default is 0.

orderby—A string of the field to order the comment by. Allowed values are:
comment_agent, comment_approved, comment_author, comment_author_email,
comment_author_IP, comment_author_url, comment_content, comment_date, com
ment_date_gmt, comment_ID, comment_karma, comment_parent, com
ment_post_ID, comment_type, user_id.

order—A string of how to order the selected order by argument. Defaults to DESC
and also accepts ASC.

o parent—An integer of a comment’s parent comment ID.

o post_id—An integer of the post ID a comment is attached to.

o post_author—An integer of the post author ID a comment is attached to.

o post_name—A string of the post name a comment is attached to.

o post_parent—An integer of the post parent ID a comment is attached to.

o post_status—A string of the post status a comment is attached to.

o post_type—A string of the post type a comment is attached to.

status—A string of the status of a comment. Optional values are hold, approve,
spam, or trash.

type—A string of the type of a comment. Optional values are '', pingback, or

trackback.
user_id—An integer of the user ID of a comment.

search— A string of search terms to search a comment on. Searches the comment_au
thor, comment_author_email, comment_author_url, comment_author_IP, and
comment_content fields.

count—A Boolean that will make the query return a count or results. The default
value is false.

meta_key—The comment meta key of comment meta to search on.

WordPress Database Structure | 43

www.it-ebooks.info

http://www.it-ebooks.info/

o meta_value—The comment meta value of comment meta to search on; meta_key
is required.

wp_insert_comment($commentdata)

Inserts a comment into the database:

o $commentdata—A required array of comment fields and values to be inserted.
Available fields to be inserted are comment_post_ID, comment_author, comment_au
thor_email, comment_author_url, comment_author_IP, comment_date, com
ment_date_gmt, comment_content, comment_karma, comment_approved, com
ment_agent, comment_type, comment_parent, and user_1id.

wp_update_comment($commentarr)

Updates comment data and filters to make sure all required fields are valid before up-
dating in the database:

« $commentarr - An optional array of arguments containing comment fields and
values to be updated. These are the same field arguments just listed for the wp_in
sert_comment() function.

wp_delete_comment(Scomment_id, $force_delete =false)

Deletes acomment. By default, it will trash the comment unless specified to permanently
delete:

o $comment_id - A required integer of the comment ID to trash/delete.

o $force_delete - An optional Boolean that if set to true will permanently delete a
comment. Example 2-6 demonstrates some of the basic functions for interacting
with the wp_comments table.

Example 2-6 demonstrates managing comment data attached to a post.

Example 2-6. Working with the wp_comments table

<?php

// insert post

$Sargs = array(
'post_title' => '5 year anniversary on 9/10/16',
'post_content' => 'Think of somthing cool to do and make a comment about it!',
'post_status' => 'publish'

);

S$post_id = wp_insert_post($args);

echo 'post ID: ' . $post_id . ' - ' . Sargs['post_title'] . '
';

44 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

// make comments array

Scomments[] = 'Take a trip to South Jersey';
Scomments[] = 'Dinner at Taco Bell';
Scomments[] = 'Make a baby';

//loop comments array
foreach (Scomments as Skey => $comment) {
// insert comments
$Scommentdata = array(
'comment_post_ID' => $post_id,
'comment_content' => $comments[S$Skey],
);
$comment_1ids[] = wp_insert_comment(Scommentdata);
}
echo 'comments:<pre>';
print_r($comments);
echo '</pre>';

// update comment

Scommentarr['comment_ID'] = $comment_1ids[0];
Scommentarr['comment_content'] = 'Take a trip to Paris, France';
wp_update_comment($commentarr);

// insert comment - sub comment from parent id
$commentdata = array(
'comment_post_ID' => $post_id,
'comment_parent' => Scomment_1ids[0],
'comment_content' => 'That is a pretty good idea...',
)

wp_1insert_comment($commentdata);

// get comments - search taco bell
Scomments = get_comments('search=Taco Bell&number=1');
foreach ($comments as $comment) {
// insert comment - sub comment of taco bell comment id
Scommentdata = array(
'comment_post_ID' => $post_id,
'comment_parent' => $Scomment->comment_ID,
'comment_content' => 'Do you want to get smacked up?',
);

wp_1insert_comment($commentdata);

}

// get comment - count of comments for this post

Scomment_count = get_comments('post_id= ' . Spost_id . '&count=true');
echo 'comment count: ' . $comment_count . '
';

// get comments - get all comments for this post
Scomments = get_comments('post_id=' .$post_id);
foreach ($comments as $comment) {

// update 1st comment

WordPress Database Structure

www.it-ebooks.info

45

http://www.it-ebooks.info/

if ($comment_ids[0] == $comment->comment_ID) {
Scommentarr = array(
'comment_ID' => $comment->comment_ID,
'comment_content' => $comment->comment_content . ' & make a baby!',
);
wp_update_comment($commentarr);
// delete all other comments
}else {
// delete comment
wp_delete_comment($comment->comment_ID, true);

}

// get comment - new comment count
Scomment_count = get_comments('post_id= ' . Spost_id . '&count=true');
echo 'new comment count: ' . Scomment_count . '
';

// get comment - get best comment
Scomment = get_comment($comment_ids[0]);
echo 'best comment: ' . $comment->comment_content;

/*
The output from the above example should look something like this:
post ID: 91011 - 5 year anniversary on 9/10/16
comments:
Array
(
[0] => Take a trip to South Jersey
[1] => Dinner at Taco Bell
[2] => Make a baby
)
comment count: 5
new comment count: 1
best comment: Take a trip to Paris, France & make a baby!
*
/

?>

wp_commentsmeta

Just like the wp_usermeta and wp_postmeta table, this table stores any custom, addi-
tional data tied to a comment by the comment_1d fields. Table 2-7 shows the database
structure for the wp_commentsmeta table.

Table 2-7. DB schema for wp_commentsmeta table

Column Type Collation Null Default Extra
meta_id bigint(20) No None AUTO_INCREMENT
comment_id bigint(20) No 0

meta_key varchar(255) utf8_general_ci Yes NULL

meta_value longtext utf8_general_ci Yes NULL

46 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Functions Found in /wp-includes/comment.php

The following functions are found in /wp-includes/comment.php.

get_comment_meta($comment_id, $key =", $single = false)

Get comment meta for a given comment ID:

« $comment_id—A required integer of the comment ID for which you would like to
retrieve comment meta.

o $key—Optional string of the meta key name for which you would like to retrieve
comment meta. The default is to return metadata for all of the meta keys for a
particular post.

o $single—A Boolean of whether to return a single value or not. The default is
false, and the value will be returned as an array.

add_comment_meta(Scomment_id, Smeta_key, Smeta_value, Sunique = false)

Add comment meta for given comment ID:

o $comment_id—A required integer of a comment ID.

o $meta_key—A required string of the meta key name for the meta value you would
like to store.

o $meta_value—A required mixed value of an integer, string, array, or object.

o $unique—An optional Boolean that when set to true will make sure the meta key
can only ever be added once for a given ID.

update_comment_meta($comment_id, Smeta_key, $meta_value, Sprev_value =")

o $comment_id—A required integer of a comment ID.

o $meta_key—A required string of the meta key name for the meta value you would
like to store. If this meta key already exists, it will update the current row’s meta
value; if not, it will insert a new row.

o $meta_value—A required mixed value of an integer, string, array, or object. Arrays
and objects will automatically be serialized.

o $prev_value—An optional mixed value of the current metadata value. If a match is
found, it will replace the previous/current value with the new value you specified.
If left blank, the new meta value will replace the first instance of the matching key.
If you have five rows of metadata with the same key and you don’t specify which
row to update with this value, it will update the first row and remove the other four.

WordPress Database Structure | 47

www.it-ebooks.info

http://www.it-ebooks.info/

delete_comment_meta($comment_id, $meta_key, Smeta_value =")

Deletes comment metadata for a provided comment ID and matching key. You can also
specify a matching meta value if you only want to delete that value and not other met-
adata rows with the same meta key:

o $comment_id—A required integer of a comment ID.

» $meta_key—A required string of the meta key name for the meta value you would
like to delete.

o $meta_value—An optional mixed value of the meta value. If you have more than
one record with the same meta key, you can specify which one to delete by matching
this value. It defaults to nothing, which will delete all meta rows with a matching
post_id and meta_key.

Example 2-7 demonstrates some of the basic functions for interacting with the wp_com
mentsmeta table.

Example 2-7. Working with the wp_commentsmeta table

<?php

// get comments - last comment ID

Scomments = get_comments('number=1');

foreach (Scomments as $comment) {
Scomment_1id = Scomment->comment_ID;

// add comment meta - meta for view date & IP address

$viewed = array(date("m.d.y"), $_SERVER["REMOTE_ADDR"]);
Scomment_meta_1id = add_comment_meta($comment_1id, 'bwawwp_view_date',
Sviewed, true);

echo 'comment meta id:

. Scomment_meta_1id;

// update comment meta - change date format to format like

// October 23, 2020, 12:00 am instead of 10.23.20

$viewed = array(date("F j, Y, g:1 a"), $_SERVER["REMOTE_ADDR"]);
update_comment_meta(Scomment_id, 'bwawwp_view_date', $viewed);

// get comment meta - all keys

Scomment_meta = get_comment_meta(Scomment_1id);
echo '<pre>';

print_r($comment_meta);

echo '</pre>';

// delete comment meta
delete_comment_meta($comment_id, 'bwawwp_view_date');

}
/*

The output from the above example should look something like this:
comment meta id: 16
Array

48 | Chapter 2: WordPress Basics

www.it-ebooks.info

http://www.it-ebooks.info/

[bwawwp_view_date] => Array

(
[0] => a:2:{1:0;s:24:"August 11, 2013, 4:16 pm";1:1;5:9:"127.0.0.1";}
)
)
*/
7>
wp_links

This table stores any links, URLs, or bookmarks you create. Since